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1. Introduction 
This paper analyzes the challenge faced by the CGIAR in evaluating the impacts of agricultural 
technologies, as well as suggesting avenues for improving the methodology used in impact 
analysis. This purpose is shared in part by other efforts within the CGIAR, especially SPIA’s 
recent review of the topic (Walker et al. 2008) and further work by Maredia (2009a and 2009b). 
Our paper addresses issues similar to those in the above papers, albeit with a different 
perspective and differing conclusions, while also reviewing recent impact analyses performed by 
CGIAR research centers and proposing some ways to proceed with future research. As with the 
aforementioned papers, our focus is the effect of specific technologies on outcomes such as 
consumption, income, and poverty. This contrasts with another kind of impact analysis in which 
the effect of CGIAR’s research expenditures is considered.1 
 
New technologies affect outcomes because people choose to adopt them, resulting in diffusion of 
the technology and its benefits in the population. Technology adoption and diffusion is a 
dynamic phenomenon, with the particularity that the nature of the impact changes fundamentally 
over time. Very broadly speaking, the benefits of a technology tend to diffuse in the economy to 
consumers and workers, while only partially remaining with producers. The share of benefits 
accruing to each set of actors in the economy varies as markets adjust to the effects of the new 
technology on outputs as well as demand for production inputs. The extent to which producers 
retain the benefits from adoption, as well as how these benefits vary with time, depends on the 
specific technology and the good being considered.  
 
Thus there is a stark difference between partial equilibrium impacts of a technology, in which the 
new technology has been adopted by some, but economy-wide prices and quantities of goods and 
factors have not yet adjusted and producers likely reap most of the technology’s benefits, and 
general equilibrium impacts, in which diffusion is (virtually) complete and all sectors of the 
economy have adjusted such that consumers and production factors gain some of the benefits of 
adoption. This difference between partial and general equilibrium impacts brings with it a 
dichotomy in appropriate impact analysis methods. Partial equilibrium impacts may be measured 
with regression techniques and related methods, which general equilibrium impacts require a 
more structural approach such as computable general equilibrium models or surplus analysis. 
 
This paper focuses almost entirely on the partial equilibrium aspect of impact analysis for two 
reasons. First, there is much room for improvement even in partial equilibrium, where impacts 
should be the simplest to estimate, and these effects are of independent interest. Second, good 
partial equilibrium impact estimates serve as an important input into structural general 
equilibrium models, so it is worthwhile to estimate them rigorously. We will, however, present a 
short section addressing general equilibrium models and discussing their relation to the estimated 
partial equilibrium impacts. 
 
Another salient characteristic of technological progress is that it is progressive, meaning that 
each new “technology” is a marginal change over the previous iteration. Estimating a new 
technology’s effect on outcomes may end up being a comparison of situations in which the 
technology being employed is very similar to the one it replaces. The total effect of a string of 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Examples of this type of analysis are Fan et al. (2000), Evenson and Gollin (2003), Raitzer and Kelley (2008), 
Maredia and Raitzer (2010), and Alston et al. (2000). 
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new technologies may not be well-described by the various marginal contributions of sequential 
outputs. Nevertheless, it is the marginal contribution that researchers are most able to estimate in 
a defensible manner. This must be kept in mind when setting expectations regarding the outputs 
of an impact analysis research program. 
 
2. Impact Analysis: Objective and Challenges 
2.1. Agricultural technologies under consideration 
Before defining impact analysis and discussing its implementation, it is worthwhile to consider 
the different kinds of agricultural technology that are likely to be evaluated. Each type of 
technology has unique limitations that must be kept in mind when setting expectations about 
what we can learn from impact analysis and the challenges that will arise when implementing 
evaluations. 
 

1. Yield-increasing and cost-saving technologies. Examples of yield-increasing technologies 
are new seed varieties whose main advantage is in output per hectare, fertilizers, and 
certain new cultivation practices. Cost-saving technologies may also include new seed 
varieties that require fewer complementary inputs, as well as cultivation practices that 
produce equal results with less effort. Both yield-increasing and cost-saving technologies 
reduce the cost per unit of output, with the possible difference that yield-increasing 
technologies actually allow for higher gross output if some inputs (especially land) are 
limited. Many CGIAR-funded technologies fall into this broad category, at least in part. 
 
Impact analysis measures the marginal effects of new technologies. In cases such as new 
seed varieties where there has already been uptake of a previous variety, the technology 
being evaluated may have only incremental increases in yield or decreases in production 
cost when compared to the next-best adopted variety. It is not possible to measure the 
benefit of the new variety over the unimproved (i.e. not the next-best) one if there is no 
counterfactual group using the unimproved seed. This is not discouraging if the intent of 
impact analysis is to evaluate the efficacy of new technologies, because it is precisely the 
marginal contribution that is relevant in that situation. But if the goal is to retrospectively 
estimate the aggregate impact of a lengthy research program that has released many 
successive outputs, such as Morris (2002), this ambitious research agenda is unlikely to 
be accomplished with sufficient analytical rigor to be credible. 
 

2. Risk-mitigating technologies. These technologies might not raise yields in times where 
conditions are favorable, but they reduce the risk of very bad outcomes when negative 
shocks occur. Drought- and pest-resistant seed varieties and livestock vaccines are good 
examples of risk-mitigating technologies. 
 
Evaluating risk-mitigating technologies is difficult. While adoption may impact expected 
outcomes, these effects may not always be observed. For example, consider a drought-
resistant variety that minimizes yield losses in years of low rain but is otherwise the same 
as other varieties. Adoption increases expected yield, but if the farm survey takes place in 
a year with good rains, no benefit is observed. If the survey takes place during a drought 
year, the yield gain is observed, which the researcher might mistakenly generalize as a 
benefit that is realized annually. A similar problem applies to livestock vaccines, where 
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inoculation could insure against devastating herd losses due to contagious diseases.2 But 
if the risk of disease outbreak in the region is relatively low, then even a years-long 
evaluation of outcomes could find no benefit to vaccination. Little can be done about this 
problem—if shocks are required for the benefit of the technology to manifest, and the 
shocks do not occur, then there is no way to estimate its impact (absent a well-understood 
insurance market that prices production risk). 
 

3. Quality-improving technologies. These technologies result in outputs that are of higher 
quality in some respect, even if yield does not improve. Perhaps the best example of such 
a technology is quality protein maize (QPM). Improved sweet potatoes [see Low et al. 
(2007)] provide another illustration. This class of technologies is different than the 
previous two because it does not raise farm expected farm profits through increased 
output or reduced cost. It only raises profits if the improved variety commands a higher 
price at market. Otherwise, this technology's benefits accrue only to consumers. 
 
The impact of quality-improving innovations is difficult to evaluate. An obvious way to 
estimate the economic valuation of quality gains in a commodity is to see how the price 
of the improved variety compares to the traditional one. With knowledge of the supply 
and demand curves, one can determine the additional willingness to pay for the new 
variety and calculate welfare gains from its introduction. But market failures may prevent 
the internalization of quality differences into prices. In this case, the impact of the 
technology is on consumers (through improved quality at the same price) rather than 
producers. Evaluating a technology that only affects consumers requires a different 
approach than that followed in this paper, which focuses on impacts that primarily affect 
producers. 
 
One example of a quality-improving technology whose benefits accrue primarily to 
consumers  is QPM, which controlled experiments have shown to have nutritional 
benefits [see Gunaratna et al. (2010)]. Because QPM is not visually discernible from 
unimproved varieties and no labeling system exists to differentiate it on local markets, 
prices do not adjust to account for the improved quality. While the current literature 
shows that there are benefits from QPM, it does not tell how much people value such 
improvements, which is necessary when performing impact analysis that evaluates the net 
benefit of the technology. 
 

4. Technologies that alter environmental externalities. New cultivation and livestock 
management techniques may fall into this category, as well as fertilizers. These are 
differentiated from technologies that improve or maintain plot-level soil quality in that 
they prevent negative externalities on neighboring property or public resources, for 
example through groundwater contamination. 
 
Potential roadblocks to successful impact analysis for these technologies are fairly 
obvious. Very little of the effect of the technology can be observed at the level of the 
adopter. The impacts on public resources can be hard to measure, and such impacts could 
take a long time to manifest. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 For an example of impact evaluation of livestock vaccines, see Catley et al. (2009). 
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2.2. Goal of impact analysis of a new technology 
The goal in performing an impact analysis of a technological innovation or intervention is to 
estimate the aggregate effect of the new technology on some set of outcome variables, after 
diffusion has taken place (Maredia 2009a and 2009b). Maredia lays out the steps existing impact 
evaluations have pursued to estimate this total effect. Here we summarize her exposition and 
maintain her notation. In Maredia's framework, two key quantities must be estimated in order to 
arrive at the aggregate impact of a new technology: the extent of adoption (Ec) and the average 
effect that adoption has on outcomes for those who have adopted (Es). The total impact of the 
innovation or intervention is the product of these two quantities, Es × Ec. For example, Es may be 
the average increase in annual profits per hectare for a farmer adopting a new variety of maize 
and Ec may be the total number of hectares planted with the new variety. Then the total effect, Es 
× Ec, gives the total annual increase in farm profits due to the new variety. Or Es may be the 
change in poverty headcount for a village that received a technological intervention and Ec the 
number of villages that received the intervention, yielding the total impact of the program on the 
number of people in poverty. 
 
The current approach of estimating Es and Ec may be appropriate in some cases, but in others it 
may not be, for a variety of reasons. In brief, this strategy may be useful when the introduction of 
the technology does not affect prices in the economy very much, so that partial equilibrium 
models are a good description of reality. We now discuss the importance of  considering partial 
versus general equilibrium impacts, and why technologies that induce general equilibrium price 
changes will complicate impact analysis. 
 
The impact of adoption is not static, as general equilibrium effects related to a technology's 
diffusion change the impact of a technology over time. This can be extremely important for an 
impact analysis and the interpretation of its results. Cochrane (1979) points out that when a new 
agricultural technology increases output, aggregate supply of the commodity increases and prices 
must fall for markets to clear. Early adopters may experience large positive impacts of the 
technology on outcomes such as income and profit, as their yields increase but there are few 
enough adopters that prices do not fall much. This is essentially a short-run partial equilibrium 
effect of the new technology, because low levels of adoption mean that market prices have not 
been affected yet. 
 
As more farmers adopt, however, the increased output may drive down economy-wide output 
prices enough that adoption fails to raise the profits of farmers.3 Input prices also adjust as the 
new technology results in different demands for factors of production. The lack of profitability 
does not indicate that farmers are irrational—no (small) farmer accounts for his own adoption's 
impact on prices, as they simply maximize profits while taking prices as given. In the end, the 
majority of benefits from the technology could accrue to consumers, who benefit from lower 
commodity prices. Thus the long-run/post-diffusion general equilibrium effect in which output 
and input prices adjust at the macro level can be much different than the short-run partial 
equilibrium effect. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 This is known as Cochrane's Treadmill. 
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How should the researcher proceed in estimating the total effect of a new technology? It is clear 
that performing an ex post impact analysis after extensive diffusion has induced general 
equilibrium effects is not a useful exercise, because the adjusted prices mean that there is no 
appropriate counterfactual "without technology" scenario to observe. On the other hand, 
observing short-run partial equilibrium effects is in many cases a feasible exercise where an 
appropriate counterfactual of non-adoption exists. Partial equilibrium evaluations can obtain the 
impacts of the technology on measures such as yield, but these results must be used in 
conjunction with structural models to project general equilibrium impacts. 
 
Thus the question is not as simple as estimating a particular average impact of adoption Es and 
extent of adoption Ec, unless there is reason to believe that the technology will have no price 
effects. This is not a likely scenario. The underlying problem with impact evaluation of a 
technology, then, is that we can only hope to rigorously estimate partial equilibrium effects, 
while what we often care about most is the general equilibrium full-diffusion effect. This is a 
deep problem that cannot be addressed with clever research methods or econometrics. Long-run 
effects of a technology cannot be estimated credibly in all but the most obscure of cases. The 
balance of this paper focuses on the careful estimation of partial equilibrium effects of a new 
technology. Structural techniques such as computable general equilibrium models are not 
addressed here. 
 
Estimating the extent of adoption (Ec) is often straightforward because this estimate can be 
obtained from an adoption survey that samples the entire population under consideration. The 
principal data necessary for estimating Ec is an indicator of whether the household has adopted 
(if the adoption decision is binary) or a measure of the extent of adoption (if a household’s 
adoption may be incomplete). Adoption studies abound and generally go far beyond simply 
estimating Ec, also attempting to study the determinants of adoption. While the latter undertaking 
is complex and presents its own set of challenges,4 measuring the extent of adoption itself is 
likely to present challenges that are more logistical than theoretical in nature. 
 
Estimation of the average impact on adopters from adoption (Es) in partial equilibrium, on the 
other hand, is in general difficult and requires careful attention. Thus the remainder of this paper 
focuses almost entirely on this task and the complications it entails. The key challenges to be 
addressed are: 

1. Estimating effects for the correct population: obtaining the effect of the technology for 
farmers that actually adopt 

2. Establishing causality: isolating differences in observed outcomes that are due to 
adoption 

3. Accounting for spillovers: including the externalities from adoption in estimates of a 
technology's impact. 

 
2.3. Conceptual framework for adoption 
Coherent impact analysis needs to view technology adoption within a conceptual framework that 
treats potential adopters as agents who make decisions in their own best interest. Foster and 
Rosenzweig (2010) point out that "adoption and input use are the outcomes of optimizing by 
heterogeneous agents." This optimization takes place in the presence of constraints on the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 See, for example, Agricultural Technology Adoption Initiative (2010). 
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budget, information, credit access, and the availability of both the technology and other inputs. 
Viewing adoption through the lens of constrained optimization by rational agents, households 
should adopt a technology if and only if 1) adoption is actually a choice that can be taken (supply 
exists and credit constraints do not prevent purchasing the technology) and 2) adoption is 
expected to be profitable or otherwise advantageous. 
 
A simple model of adoption and its resulting effect on outcomes can illustrate this idea more 
precisely. What follows is a variant of the well-known Heckman (1979) selection model, where 
selection into "treatment" (adoption) is made by farmers on the basis of expected profitability. 
For now, we assume that farmers have access to the technology. There are two sets of variables 
that determine the expected profitability of adoption for farmer i at time t: one that is observable 
by the researcher ( ) and one that is not ( ). The following rule characterizes the adoption 
decision: 
 

(1) 
 

 

 
 
where T is a binary indicator of adoption,  is the maximized value of a general expected 
profit function, and  is an i.i.d. error term. When  is zero, adoption takes place if and only if 
maximized expected profits with the new technology exceed maximized expected profits from 
non-adoption. Larger variance in  will cause more farmers to mistakenly adopt or not adopt.5 
Unless  is very important, the farmers we observe adopting are in large part those who found 
the technology profitable. 
 
The outcome variable (for example, household consumption, poverty status, or profits)  is a 
function of observed variables , unobserved variables , adoption status , and an i.i.d. 
error term : 
 
(2)   

 
where X and Z can share elements and U and V can share elements.  
 
2.4. Estimating the effect of adoption for adopters 
The selection model in (1) and (2) shows why it is important for impact analyses to focus on 
estimating the effect of adoption for those who actually adopt, rather than for the entire 
population of potential adopters. Using the terminology of treatment effects, our interest is in the 
average treatment effect on the treated (ATT) rather than the average treatment effect (ATE). It 
is the ATT, Es, that we multiply by the extent of adoption to find the total effect of the 
technology.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Here we are setting aside the issue of risk and any other factors that make profit maximization inadequate for 
characterizing the adoption decision, but it is easy to conceptualize them by replacing the profit function with a 
utility function. 
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Looking at (1), we see that adopters and non-adopters are fundamentally different in the benefits 
that they would experience from using the technology. Adopters have characteristics, both 
observed and unobserved, that make adoption profitable in expectation. On the other hand, non-
adopters refrain from using the technology because they expect to lose money by doing so. In 
this simple model, then, the ATT for profits is positive because it only includes adopters, while 
the ATE could be positive, negative, or zero because it also includes non-adopters. The outcome 
of interest is not always profit, but to the extent that profits are positively correlated with such 
measures as expenditure and poverty, this relationship between the ATT and ATE can be 
expected to hold. 
 
Extending this simple model, though, one can find situations in which the ATE does not 
necessarily give a lower bound for the (absolute value of the) ATT. When some non-adopters 
would have higher gains from the technology than the adopters, the ATE can exceed the ATT. 
Sunding and Zilberman (2001) review the literature on risky technologies and present a model in 
which technologies may not be fully adopted even if they raise expected profits. A hypothetical 
scenario in developing countries is that even though a new technology increases expected profits 
more for poor farmers than rich ones,6 it also increases risk, which the poor are unable to insure 
against through insurance or credit markets. Thus the rich could be more likely to adopt than the 
poor despite their lower gains from adoption, so that the ATE on expected profit may exceed the 
ATT.7 The ATE could also exceed the ATT if those with the highest returns cannot adopt due to 
credit constraints or other supply constraints. 
 
Thus while the ATE of a technology is interesting in its own right, it is not useful in the context 
of an impact analysis where selection into adoption may be important. The ATT—the effect of 
adoption for adopters—is the necessary quantity to be estimated. 
 
2.5. Selection and the counterfactual 
Adopters and non-adopters usually differ in more ways than their potential returns to adoption. 
They also differ in variables that determine the outcomes of interest. The obvious problem is 
selection bias: if the unobservable variables in U (which determine adoption) and V (which 
determine outcome) are correlated, then estimating (1) and (2) will give a biased estimate of the 
effect of adoption on the outcome. The extent of this bias depends on how important the 
unobservable variables are in their respective equations, as well as how strongly the 
unobservables determining adoption are correlated with those determining outcomes. 
 
There are many plausible reasons that U and V should be correlated, relating to farmer and plot 
characteristics and also to temporal shocks. One example is farmer ability, which cannot be 
accounted for entirely by observable characteristics such as age and education. All else equal, 
better farmers probably have higher profits (so ability is in V), while they likely have higher 
returns to the technology because they are more savvy in implementing it (so ability is in U). In 
the case of fertilizer adoption, Foster and Rosenzweig (2010) use the example that good soil 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This could occur when the rich are already using an intermediate technology that is superior to that being used by 
the poor, so that the marginal gain from adoption is lower. 
7	  Agricultural Technology Adoption Initiative (2010) provides more examples of constraints on adoption.	  
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quality (often unobserved) increases yields regardless of fertilizer use and also increases the 
return to fertilizer use. Thus soil quality is in U since it affects returns and therefore influences 
the decision to adopt, and it is also in V since it affects the outcome (yield, income, profit) 
directly. Even plot-level rainfall shocks can enter both U and V if the technology is adopted after 
some of the season's rainfall takes place, for example some types of fertilizers or cultivation 
techniques. None of these examples are trivial—in fact, one or more are likely to apply to most 
agricultural technologies. 
 
This discussion of the selection problem brings us to a main challenge in impact analysis: 
establishing the proper counterfactual group against which to compare adopters. In order to 
estimate the effect of a technology, it is necessary to know what the outcome of the adopting 
farmers would have been if they would not have adopted. The fact that adoption is the result of 
optimization creates a potentially severe problem with selection into treatment on the basis of 
unobservable characteristics, as explained above. Thus two farmers who are observationally 
equivalent in every way except for adoption (and outcomes) are probably not equivalent on 
unobservables. Because of this, using the observationally identical non-adopter as the "without" 
comparison for the adopter makes little sense. The inadequacy of "selection on observables" 
approaches—those in which equivalence on observable characteristics is assumed to imply equal 
probability of adoption—will be discussed further in the review of recent impact analyses. 
 
In order to arrive at a reasonable counterfactual group of non-adopters, it is necessary to take 
seriously the possibility of strong selection on unobservables that arises from farmers' profit 
maximization problem. Doing so demands that the researcher move beyond selection on 
observables and towards research designs that explicitly establish a plausible counterfactual 
group for comparison with the adopters. Careful research designs are almost certainly more 
difficult to plan and implement than the ubiquitous selection on observables evaluations, usually 
requiring advanced planning before diffusion of the technology and the implementation or 
identification of some mechanism that influences adoption independent of unobservable 
characteristics. Suggestions for such designs, as well as examples of projects in which they could 
be implemented, are provided at the conclusion of this paper. 
 
2.6. Understanding externalities from adoption 
Thus far in this discussion of partial equilibrium effects of adoption, it has been assumed that 
adoption by a farmer affects only his own outcomes. In reality, adoption of a technology can 
have local impacts on the outcomes of other adopters as well as non-adopters, even in the 
absence of economy-wide general equilibrium price effects.8 Households interact in local factor 
and commodity markets in which prices and quantities can change as a result of adoption by 
some of the participants. Additional output due to adoption can increase the demand for labor in 
the local market, potentially raising wages (if there is no excess labor supply) but almost surely 
increasing the level of employment, raising income for laborers; increase or decrease demand for 
other scarce inputs, changing their price and thus changing the parameters of farmers' profit 
maximization problems; and if the local market is not well-integrated to outside markets, 
lowering prices for all buyers and sellers due to increased local output. Adoption by a farmer 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 There are other interesting spillovers as well, such as general equilibrium price effects and  the effects of adoption 
by one farmer on the adoption decision-making of other farmers. Here, we are focusing only on partial equilibrium 
externalities that affect outcomes such as income and profits.  
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might have externalities for other adopters, such as providing the opportunity to learn from his 
experience [e.g. Conley and Udry (2010)] thereby increasing realized the return to adoption. 
There may also be effects for non-adopters beyond changing prices if they are directly affected 
by the existence of the technology. For example, a technology with negative environmental 
externalities could affect nearby households and farms. 
 
The existence of externalities may be an important consequence of the diffusion of a technology, 
so spillovers need to be included in estimation of impacts. At first it might appear preferable to 
estimate the ATT separate of the externalities; after all, the stated goal of impact evaluation so 
far has been to find the effect of adoption for adopters. In the presence of spillovers, however, it 
is necessary to qualify this statement. The quantity we truly want for Es is 

, because this gives the average effect of the technology when it is 
taken up by actual adopters.  
 
Externalities from adoption complicate the necessary task of identifying the no-adoption 
counterfactual. Even if the counterfactual group is defined perfectly in the absence of spillovers, 
introducing spillovers between the adopters and counterfactual farmers will invalidate the 
comparison between them. This is the well-known problem of control group contamination. The 
control group is supposed to represent the outcome in the absence of the technology, but if 
adoption indirectly changes outcomes for the control farmers, then their outcomes no longer 
reflect the counterfactual of no-adoption. This can lead to either over- or underestimation of the 
technology's impact. If spillovers between adopters and the counterfactual non-adopters are 
positive, then the technology will appear less effective because the control group will be better 
off than it would have been in the absence of adoption. If the externalities are negative, then the 
technology will appear more effective. Failing to account for externalities will not lead to an 
estimate that bounds the true effect. Thus it is necessary to account for spillovers explicitly in the 
research design. 
 
2.7. Dynamics of adoption 
When estimating the average impact of a technology on adopters (Es) in partial equilibrium, it is 
important to understand that Es varies over time. Because of this, the timing of the evaluation has 
an effect on the technology's estimated impact and needs to be considered carefully. The extent 
to which the dynamics of adoption matter is dependent upon the characteristics of the 
technology, particularly its pattern of  diffusion and the importance of learning in utilizing the 
technology effectively. The dynamics of adoption are important even in the short-run where 
economy-wide prices are unchanged by adoption, as we discuss here. 
 
One reason that Es varies over time is that adopters change their usage of the new technology as 
they use it and learn more about it. When adopters learn to use the technology more effectively, 
its impact on outcomes such as yield should increase. Conley and Udry (2010) provide an 
example of this in the context of pineapple farmers in Ghana, where farmers change their usage 
of fertilizer based on the results of previous efforts (both their own and those of others). We 
should expect the effect of the introduction of pineapple farming on profits and consumption in a 
farmer's first year of growing pineapple to be different from that in his second or tenth year, as 
he calibrates the fertilizer usage to his own plot. Thus, even if the set of adopters stays constant 
across years, Es should evolve over time. 
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The set of adopters of a new technology almost certainly changes with time. Sunding and 
Zilberman (2001) make this point clearly in their review of agricultural technology adoption, 
which we borrow from and expand on in this discussion. One reason for the change in adopters is 
that while some farmers may initially choose not to adopt, as they observe other farmers using 
the technology they learn a sufficient amount about it (both how to implement it and what they 
can expect profits to be) that they adopt in later periods. Farmers with large landholdings might 
adopt first because they can experiment with the technology on a portion of their land to learn 
about it, then expand its use later, while small-holders adopt later after learning from the large-
holders. Another explanation is that high interest rates can make adoption prohibitively 
expensive. This could be particularly important in developing countries—all else equal, wealthy 
farmers who either have the most resources to self-finance adoption or can access credit at lower 
rates will be those able to adopt earliest. Poorer farmers may be able to adopt later, however, as 
they learn by observing adopters that the technology is sufficiently profitable to justify 
borrowing, the price of the technology falls, or lenders become more willing to finance the 
technology cheaply after seeing that it is profitable. 
 
The evolving set of adopters is important because, even if farmer-specific effects of adoption 
never change, these effects differ by farmer. Large-holders and entrepreneurial farmers, often the 
first to adopt, could have the highest returns from adoption. Hence the average impact of the 
technology in the first year, when it is only in use by these effective farmers who are often less 
constrained in their ability to utilize complementary inputs, could be higher than in subsequent 
years when less-efficient and more-constrained farmers have adopted. 
 
It is clear that the effect of a technology on adopters evolves over time, both because of within-
individual changes in returns and the continuous adoption by new adopters with heterogeneous 
returns from the new technology. Impact analyses using identical methodologies, but taking 
place at different lengths of time after introduction, will arrive at different estimates of the 
technology's average impact, even in the absence of general equilibrium effects. This is because 
the impact of a technology is not a static measure. Rather, it is flow of impacts that changes 
continuously. The total realized impact of a technology is the integral of this flow from the time 
of its introduction until the present. This is not a measure that a researcher can expect to obtain. 
Estimating a snapshot of the flow using an impact evaluation may provide an adequate 
approximation of the technology's effects, but it is necessary to consider the dynamics of 
adoption and how they affect the usefulness of such estimates. 
 
3. Current Approaches to Impact Analysis: Summary and Critiques 
Much of the recent impact analysis literature, both within the CGIAR and elsewhere, has drawn 
on a common set of tools to estimate the effect of technological innovations. In addition to 
qualitative methods, which will be addressed briefly, the most prevalent methods used are 
experiment station or on-farm trials, selection on observables designs such as propensity score 
matching (PSM) and regression adjustment, and difference-in-differences or double difference 
(DD) analysis (sometimes combined with PSM). Because these methods are ubiquitous, it is 
worth looking more closely at each of them, considering both their strengths and weaknesses. 
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3.1. Qualitative methods 
Qualitative methods of technological impact evaluation are those that use tools such as 
interviews and focus groups, rather than quantitative data, to arrive at conclusions about the 
impact of a technological innovation.9 Qualitative studies are useful because they typically elicit 
information directly from people affected by the new technology about likely pathways through 
which the technology has impacted them. This gives researchers an idea of which impacts to 
look for in a quantitative analysis. For example, interviews might suggest that people who 
adopted also hired many more laborers for the harvest, leading researchers to collect detailed 
employment data among both agricultural and non-agricultural households. 
 
Such methods, however, are insufficient to rigorously characterize the impact of a technology. It 
goes without saying that interview responses do not always match with the story told by the data. 
Also, while qualitative results might suggest that some impact is present, they cannot say how 
large that impact is. When the goal is to quantify impacts with any level of accuracy, qualitative 
methods must play a secondary role to careful quantitative analysis, informing researchers of the 
data they should make an effort to collect and likely impacts to focus on as they perform 
statistical analyses. 
 
3.2. Experiment station and on-farm trials 
An approach used widely in ex ante impact estimation of new agricultural technologies, but also 
in ex post estimation, is to pilot the technology on test plots. Typically, the new technology is 
employed alongside the traditional technology, either on an experiment station or on real farms 
in areas where the technology is being or will be used.10 The average difference in yields 
between plots using the new and old technologies is taken to be the effect of adoption on yield. 
This estimate can then be used to make inferences about changes in farm-level profitability due 
to adoption as well as aggregate changes in output and surplus after diffusion has taken place. 
 
A number of recent impact analysis studies use the results from trials to estimate the effects of a 
wide range of technologies. For example, Alene et al. (2009) use on-farm trial data from various 
sources to estimate yield gains from improved varieties of maize in West and Central African 
countries, then project these gains onto the amount of adopted area to arrive at total yield growth 
attributable to improved varieties. Laxmi et al. (2007) use both station and on-farm trials in 
evaluating the impact of zero tillage technology on rice and wheat yields in India, as well as on 
water use and other outcomes. An analysis by the Asian Development Bank (Operations 
Evaluation Department 2005) of a project involving the WorldFish Center estimated the impact 
of genetically improved farmed tilapia on yields with both types of trials. SPIA's recent 
publication, "Strategic Guidance for Ex Post Impact Assessment of Agricultural Research" 
(Walker et al. 2008), considers the use of experimental plots for ex post impact analysis to be a 
"good practice" in many cases. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Good examples of this work can be found in Adato and Meinzen-Dick (2007). We should point out that by 
"qualitative analysis" we mean methods that are not data-driven in reaching their conclusions. There is some 
confusion on this point because in a quantitative analysis, binary variables (like poverty status) are often called 
"qualitative" data. Using binary variables in a quantitative framework does not imply that the analysis is qualitative. 
10 Bellon and Reeves (2002) collect a number of recent papers elaborating on on-farm trial methods and their 
comparison to experiment station trials.  
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One obvious limitation of experiment station trials is in the set of effects that it can estimate, 
primarily the change in yield due to the new technology. Impacts on even relatively simple 
measures such as income and profitability cannot be obtained without making a number of 
assumptions. First, assumptions must be made about input and output prices. Second, and 
perhaps more importantly, the experimenter must decide how to alter the other inputs (e.g. 
fertilizer and labor) in conjunction with using the new technology, which may not resemble 
farmers’ solution to the profit maximization problem. Foster and Rosenzweig (2010) point out 
that accounting for even small changes in the use of inputs can drastically change the estimated 
effect of a new technology on profits. 
 
Furthermore, experiment stations may not reflect the actual conditions faced by potential 
adopters.11 Plot characteristics such as soil quality and access to irrigation may differ 
substantially between the station and the farm. If the advantage provided by the new technology 
varies with such characteristics, then the estimated impact may be over- or understated compared 
to that experienced by actual farmers. Real-world farms may also be managed differently than 
experiment stations in terms of farming techniques, input provision, and skillful implementation 
of the technology. Each of these factors is likely to affect the returns to the technology. 
 
While on-farm trials may ameliorate some of these problems to some degree, a serious drawback 
remains: there is typically no reason to be certain that the farmers and farms participating in a 
trial are representative of those who actually adopt the technology. To illustrate this issue, 
consider the “ideal” case of a randomized control trial where a set of households is randomly 
chosen to adopt a new HYV seed and another set is randomly chosen to act as a control, 
continuing to use the traditional seed variety. Suppose the objective is simply to measure the 
change in yield due to the HYV seeds, and further suppose that there are two types of farms in 
each group, those whose soil is well-suited to HYV seeds and those whose soil is not (i.e. no 
gains from HYV use). At harvest, the measured change in average yield from HYV seeds can be 
expressed as , where  is the average yield on those farms receiving the HYV 
seed “treatment” and   is the average yield on the control farms. This expression can be 
decomposed into the change due to HYV seed on farms with suitable (S) and unsuitable (U) soil 
for HYV: ,where  is the proportion of 
households with suitable soil.  
 
Once the technology is actually released, it is unlikely that type-U farmers will adopt the HYV 
seeds because they offer no advantage over traditional seed. If type-S farmers do adopt (we 
assume it is profitable to do so), then the change in yield for adopters is 

. Note that this is the quantity in which we are interested (Es) because 
it corresponds to the average gain realized due to actual adoption rather than the predicted gain 
for a random, possibly non-adopting, household. In the terminology of treatment effects, the on-
farm trial gives the ATE while the quantity of interest is the ATT. 
 
In the example, an on-farm trial would understate the yield gains due to adoption of the new 
technology because it includes households who would not gain from the new technology and 
thus not adopt. But the bias need not be downward. If, for example, the households with the 
highest gains from adoption were also the most credit-constrained and consequently unable to 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 Maredia (2009a) makes similar points about experiment stations. 
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adopt, then the RCT could overstate the real-world ATT. Because the direction of the bias from 
an on-farm trial (whether randomized or not) is ambiguous, such an exercise is unable to give a 
firm lower or upper bound on the effects of the new technology under real-world conditions. 
 
Both types of trials are unable to account for the potentially important role of spillovers and 
general equilibrium effects arising from the introduction of a new technology. This issue will be 
addressed at length below.  
 
Hence, while experiment station and on-farm trials may be useful in some capacity, especially 
for ex ante analysis, they do not offer a reliable way to estimate the effects of a technology on 
simple measures such as yields, much less more complicated outcomes like profits. 
 
3.3. Selection on observables designs 
In contrast to experiment station and on-farm trials, selection on observables approaches attempt 
to recover Es by observing outcomes after households have already chosen whether or not to 
adopt the new technology. The main problem faced by such methods is in finding an appropriate 
group of non-adopters with whom to compare the adopters.12 Selection on observables designs, 
whether using regression adjustment or PSM, both attempt to solve this problem by assuming 
that adoption is “as good as random” after conditioning on some set of observable household, 
plot, and/or community characteristics. Returning to equations (1) and (2), this implies that after 
controlling for ,  (the set of unobserved determinants of adoption) is uncorrelated with  
(the unobserved determinants of the outcome variable).  
 
A regression adjustment model (linear regression that controls for observables affecting 
selection) assumes that a linear combination of the observables is sufficient to control for all 
factors simultaneously affecting both the adoption decision and the outcome variable.13 There is 
often some confusion about how much PSM relaxes this assumption. By matching adopters and 
non-adopters on the basis of the propensity score generated by a first-stage logit or probit model, 
PSM basically allows for a somewhat arbitrary non-linear combination of the observables to 
control for factors affecting both adoption and outcomes (Rosenbaum and Rubin 1984). It does 
not alter the basic assumption that the observable explanatory variables are sufficient to 
characterize all determinants of adoption that also affect the outcome variable. 
 
A plethora of recent impact analysis papers are willing to make this assumption in a wide range 
of evaluations. Kumar and Quisumbing (2010) use PSM to study the effect of adopting new 
fishpond management technologies and vegetable varieties on household-level economic and 
nutritional outcomes in Bangladesh. Dillon (2008) uses PSM to try to control for endogenous 
placement of groundwater wells for agricultural irrigation in Northern Mali. Dey et al. (2009) 
apply the method to investigate the economic impacts of adopting integrated agriculture-
aquaculture systems in Southern Malawi. Kassie et al. (2010) compare adopters and non-
adopters of improved groundnut varieties in Uganda in terms of crop income.14 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 See section 2.5. 
13 This assumption is relaxed when using difference-in-differences, explained below.  
14 PSM methods are also common in studies that go beyond analysis of agricultural technologies, for example 
evaluations by IFPRI of community development projects (Nkonya et al. 2008) and farmer field schools (Davis et al. 
2010). 
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If the assumption of selection on observables holds (and the logit or probit functional form 
adequately approximates the true selection equation) then PSM gives the ATT (Es), as desired.15 
Selection on observables is clearly a strong assumption in the context of technology adoption 
and, of course, is fundamentally untestable. Returning to Foster and Rosenzweig’s (2010) 
assertion that adoption (or non-adoption) is a choice that results from optimization, we can 
reconsider the adoption and outcome equations in the context of PSM to show how PSM can fail 
to establish a viable comparison group of non-adopters against which to measure changes in 
outcomes. 
 
To simplify the illustration, we will suppose that there is only one observable factor, , and one 
unobservable factor, u,  and that these factors affect both the profitability of adoption and the 
outcome variable. We can also rewrite the change in profitability due to adoption as  
so that adoption occurs only if  (suppressing the time subscript). Finally, we 
assume without loss of generality that  and . 
 
Suppose that there are two farmers with equal values of , but that farmer A adopts and farmer N 
chooses not to adopt. Then PSM will use farmer N as the counterfactual for A since their 
observables are the same. But because A adopted while N did 
not, . Then it must be true that either  or . 
In the former case, the assumption that  implies that if neither farmer had adopted, farmer 
A would have had higher expected outcome than farmer N. That is, 

. Hence the non-adopter was not a valid counterfactual 
for the adopter because they would have had different expected outcomes in the absence of 
treatment. 
 
Minimal assumptions about the relationship between unobservable attributes, adoption, and 
outcomes were necessary to arrive at this breakdown in PSM. It was sufficient for   and  to 
be nonzero, which is not only plausible but also probable in most cases of technology adoption. 
Intuitively, the problem is that PSM assumes that observationally similar farmers are on average 
the same, even when one of them has chosen rationally to adopt and the other has not. It is highly 
unlikely that this is the case precisely because farmers are choosing to maximize profit or 
otherwise optimize some outcome. By employing PSM, we virtually guarantee that there will be 
an imbalance of unobservables after balancing on observables between adopters and non-
adopters. This is the standard selection bias problem often discussed in the context of linear 
regression models. Using PSM does not solve the selection bias problem. 
 
Existing impact analyses rarely consider the adoption process carefully when applying PSM and 
do not seriously ask whether the available observational data are sufficient to characterize the 
adoption decision as a rational business decision in the face of constraints. Ravallion (2005) 
notes in the context of antipoverty programs that the performance of PSM relies heavily on the 
adequacy of the data collected in characterizing adoption. In the case of technology adoption, it 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 For this to be true, it must also be the case that there are no spillover effects between the adopters and non-
adopters. This is discussed below. 
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is difficult or even impossible to collect enough data to reasonably predict adoption. For 
example, Kumar and Quisumbing (2010) predict adoption of new fishpond management 
technologies and vegetable varieties using farm size, household composition and education level, 
and whether various shocks were experienced during the study period. It is unlikely that these 
factors exhaust the true determinants of adoption (keeping in mind the decision as one of profit 
or utility maximization), such as land quality, farm characteristics, available assets and credit 
access at baseline, and farmer skill. Indeed, it is unlikely that most of the important determinants 
of adoption could be collected or quantified even if significant monetary resources are available 
to the researcher. 
 
It is difficult to imagine that farmers decide whether or not to adopt technologies in a way that is 
largely random in relation to farm- or household-level outcomes. Yet unless the adoption 
equation is strongly predictive of the adoption decision, we are left to believe just that. For this 
reason it is important to know the strength of the adoption equation, for example its pseudo-R2, 
in order to know if the observable variables adequately predict adoption. Many impact analysis 
studies do not report this statistic, while those that do (e.g. Kassie et al. 2010) tend to indicate 
that the adoption equation is quite weak, leaving much of the decision attributable to unobserved 
factors or what we are to believe are the whims of the farmer. 
 
A final technical note on PSM is in order. Many studies rightfully “trim” the adopting and non-
adopting observations in order to ensure overlap of the propensity score between the two groups. 
Ravallion (2005) makes an important point on this subject: if trimming the dataset results in the 
dropping of some adopters (i.e. those with the highest probability of adoption), then the resulting 
estimated impact of adoption is not the true ATT. Adopters with the highest propensity score 
may be those with the highest gains from adoption, in which case trimming them from the 
sample means that the benefit of adoption for adopters (the ATT) is understated. Of course this 
does not suggest that researchers employing PSM should not trim their dataset; the problem is 
that those with exceptionally high propensity scores simply do not have a valid counterfactual 
counterpart, even on the basis of observables. 
 
3.4. Difference-in-differences methods 
A growing and welcome trend in impact analysis is the use of difference-in-differences methods 
using panel data. The advantage of using DD is that it allows for the researcher to control for the 
time-invariant characteristics of individuals or households when comparing adopters and non-
adopters of a technology. This weakens the key assumption required for the validity of 
comparisons between adopters and non-adopters: single-difference (cross-sectional) approaches 
require that, after controlling for observable characteristics, the two groups would have the same 
expected outcomes in the absence of adoption. DD methods instead require that after controlling 
for observables, the change in expected outcomes between the pre- and post-adoption surveys 
would be the same in the absence of adoption. 
 
Due to the increased data requirements of DD analysis, few technology adoption analyses have 
used it. An early example of using longitudinal data in impact analysis for agricultural 
technologies is Walker and Kshirsagar (1985), which uses two waves of surveys to study the 
effects of adopting machine threshing technology in India. Dillon (2008), mentioned above, uses 
DD along with PSM to investigate the impact of irrigation from wells on agricultural production, 
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household consumption, and nutrition in Northern Mali. Also mentioned above, Kumar and 
Quisumbing (2010) apply DD with PSM to study the consequences of adopting new fishpond 
management technologies and vegetable varieties in Bangladesh. Rusike et al. (2010) also use 
PSM alongside DD in investigating adoption rates (not the impact) of new varieties of cassava in 
Malawi. Finally, Omilola (2009) attempts to apply DD to a dataset where only one wave of data 
was collected; the “baseline” data are in fact constructed by asking farmers retrospective survey 
questions. The goal of that paper is to see if tube well adoption in Nigeria decreased poverty. DD 
methods are more widely applied in program evaluation contexts, where evaluation is more 
likely to be planned in advance and where the intervention may be better-defined than the 
introduction of a new technology. 
 
While expanded use of DD in impact analysis would be a positive development and certainly no 
worse than single-difference methods in controlling for selection bias into adoption, DD methods 
do not eliminate the need to think carefully about the adoption decision and ways in which 
adopters may differ from non-adopters. It is not a priori obvious that outcomes should be 
evolving similarly for those who choose to adopt and those who do not, even after considering 
observable characteristics. 
 
For example, consider that more innovative and entrepreneurial farmers may be those who adopt 
a new technology. Such characteristics will not be recorded on a survey and are not necessarily 
highly correlated with observable characteristics. If these farmers are in general the most 
successful farmers in their village, we might expect them to be increasing their yields and profits 
at a faster rate than non-adopters even in the absence of the new technology, as they continually 
improve their farming practices and possibly adopt other technologies. Thus DD estimates would 
falsely attribute these increases to adoption, when in reality they are due to the fact that the yields 
and profits of more able farmers follow a different trajectory than less able farmers. 
 
As another example of where DD could fail, suppose that adopters of a new technology have 
plots that are more sensitive to rainfall shocks than non-adopters. If during the follow-up survey 
there has been a drought that affected the entire sample of farmers, then adopters will have lower 
yields due to their responsiveness to rainfall shock, but this effect cannot be disentangled from 
the effect of adopting the new technology. 
 
With these illustrations in mind, it is clear that DD does not solve the potentially serious issues of 
selection bias involved in technology adoption and that adopters and non-adopters need not 
follow parallel trends in outcomes in the absence of adoption. One way to test for the validity of 
the parallel trends assumption is to use multiple years of pre-adoption panel data to see if the two 
groups are following similar trends prior to adoption. While finding parallel trends does not 
guarantee that the trends would be the same during the post-adoption period, it does provide a 
compelling piece of evidence that this may be the case. Of course a long panel dataset requires 
significantly more data collection than a simple DD approach, so it is may be infeasible in many 
cases. 
 
One lesson from the existing impact analysis studies using DD is that in order for such a study to 
be convincing, it needs to be planned in advance of the introduction of the new technology so 
that proper baseline data can be collected. Using retrospective data from questions asked during 
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the post-diffusion survey instead of a proper baseline survey, as in Omilola (2009), likely results 
in substantial measurement error of both dependent and explanatory variables. Measurement 
error of explanatory variables is a particularly serious problem in analyses using longitudinal 
data (such as DD) and can result in estimates that are greatly biased toward zero. Likewise, 
collecting baseline data after the technology has already been adopted fails to capture the full 
effect of adoption. This is the problem that Kumar and Quisumbing (2010) face because their 
baseline surveys occur up to several years after adoption, a problem that they discuss in detail. 
Many of the adopters in their sample had probably already experienced many of the gains from 
adoption by the time the baseline data was collected, so the difference between baseline and 
follow-up survey outcomes probably understated the effects of adoption. 
 
Designing the impact evaluation prior to rolling out a new technology can prevent these 
problems by planning baseline survey collection ahead of time, as is currently done with 
program evaluations. Of course, if it is possible to plan a technology rollout and its evaluation, 
there are probably better evaluation methods available than DD. These will be discussed in 
Section 4. 
 
3.5. Addressing externalities from adoption 
The previous discussion has focused primarily on the limitations of popular econometric 
methods in establishing the proper counterfactual group against which to compare adopters. An 
additional and closely related issue faced by most impact analyses is that of externalities from 
adoption, both on other adopters and on non-adopters. Section 2.6 addressed the issue of 
externalities in detail. Here we will discuss how the existence of externalities affects current 
impact analyses and the ways in which it may affect the conclusions in such work. externalities 
are not simply econometric issues that must be addressed with improved methods, but rather 
fundamental consequences of technology adoption that must be considered carefully. 
 
Most impact analyses (including nearly all that have been mentioned in this section) compare 
adopters with non-adopters within the same village or set of villages. Even supposing that the 
researcher successfully creates a valid counterfactual group for the adopters among the non-
adopters (i.e. the two groups would have the same outcomes in single-difference models or the 
same change in outcomes in DD models), the existence of externalities can result in incorrect 
estimates of the impact of adoption. Miguel and Kremer (2004) make this point clearly in the 
context of de-worming drugs. While the drugs indeed had large impacts on rates of illness and 
other outcomes, failing to account for the fact that treated students ceased infecting untreated 
students would cause one to conclude erroneously that the drugs had had not effect. 
 
A similar issue likely afflicts existing impact analyses of agricultural technologies. To illustrate 
using a recent evaluation, consider Omilola (2009). Suppose for simplicity that within a village, 
people randomly choose whether or not to adopt a new tube well or pump technology, so that we 
can ignore selection bias in adoption. If usage of these technologies for irrigation yields a larger 
harvest for adopters, then there are a number of ways in which this increase could affect non-
adopters. First, the larger harvest may increase demand for labor, driving up wages. This would 
increase income for non-adopters above the case in which nobody adopted. Second, if the market 
for agricultural products is restricted to a small geographical area, the increased output will drive 
down prices faced by all producers and thus lower farm income. Third, if there is some form of 
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mutual insurance in the village, income gains accruing to adopters may be shared with non-
adopters. Fourth, non-adopters may have an opportunity to make use of the adopters’ wells or 
pumps for their own farms, even though they have not adopted the technology themselves. This 
could raise output and income for non-adopters. Certainly there could be other channels through 
which non-adopters are affected by others’ adoption as well. 
 
Many of these externality channels could lead to the author’s conclusion that the effects of 
adopting these irrigation technologies are small, even if the effects are in fact large. When 
adoption by some also benefits the non-adopters, the gains from the new technology are 
understated because it appears that the adopters would have been quite well-off even without the 
new technology. On the other hand, if non-adopters suffer due to adoption by others, as in the 
case of prices being driven down, the new technology may appear more beneficial than it really 
is. Indeed, externalities invalidate the use of the non-adopters as the counterfactual for adopters 
because they no longer represent what the adopters would experience in the absence of the 
technology. 
 
The problems posed by externalities are mitigated if adoption takes place at the village level, 
similar to the village-level irrigation programs studied in Dillon (2008). In this case there is 
probably not much externality from adopters to non-adopters unless there is substantial inter-
village interaction, which the author says is not a concern. If we ignore the selection bias issue, 
then a comparison of adopters to non-adopters is valid, but another problem exists. Random 
shocks, particularly rainfall, are often clustered at the village level. It is necessary to account for 
this intra-village correlation in statistical comparisons between adopters and non-adopters. Doing 
so can raise the standard errors of estimates substantially, especially if the number of clusters 
(villages) is small. In the case of Dillon’s irrigation study (which does not appear to account for 
clustering in its computation of standard errors), there are only ten villages, a number low 
enough that precise comparisons between them that also account for externalities are unlikely. 
 
Laboratory and on-farm trials might seem to offer an advantage by strictly controlling the 
behavior of the control group to prevent externalities from adopters. But, aside from the 
problems with these trials explained above, it is worth noting that we do not want to eliminate 
externality effects when studying the effects of a new technology. Externalities, both on adopters 
and on non-adopters, are a consequence of adoption in the real world and thus it is important to 
incorporate these externalities in the calculation of the technology’s impact. By ignoring 
externalities—by design—laboratory and on-farm trials fail to reflect the true impacts of 
adoption. 
 
4. Suggested Approaches and Improvements 
 4.1. General recommendations 
Current approaches to impact analysis suffer from two main weaknesses: problematic formation 
of the counterfactual non-adopting group and failure to account for externalities between 
adopters and non-adopters. Advances in impact analysis must address these key shortcomings if 
evaluations are to gain credibility. This is, of course, a formidable challenge that cannot be 
overcome in the space of one paper. Our recommendations below provide a step toward that 
goal. 
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It is evident from the above discussion that current approaches rely almost exclusively on some 
form of selection on observables and that such a strategy will rarely result in convincing results. 
The broad suggestion made here is that, whenever possible, impact analysis should be based 
upon micro-studies with explicit research designs that estimate the effect of the new technology 
without relying exclusively on the observable characteristics of potential adopters. Optimally, 
such research programs should be planned in advance of the technology’s introduction and 
diffusion. While such programs are not easy or inexpensive to implement, they allow for the 
application of econometric techniques for which the underlying assumptions are clear and 
relatively weak. Thus the results stemming from their implementation will be more credible and 
more likely to withstand scrutiny than those from ex post evaluations relying on strong and 
usually unreasonable assumptions. 
 
4.2. Approaches to avoid 
Recent papers, both academic and policy-oriented, have focused on the potential application of 
RCTs to impact analysis of agricultural technologies. While the use of RCTs has significant 
potential to add rigor to future analyses, and indeed much of the rest of this section discusses this 
possibility, it is important to point out applications of RCTs that would not be fruitful either 
because they fail to overcome the problems with current methods or because they introduce new 
issues that undermine their usefulness. 
 

1) There has been much interest in the work of Duflo et al. (2008) in conducting on-farm 
trials in which participating farms had one small plot randomly allocated to not using 
fertilizer and two others to using pre-determined amounts of fertilizer. The paper has 
appeal in part because it uses a simple method of randomization (at the plot level) to 
estimate the gains from the new technology, removing the possibility of bias from 
farmers selecting certain types of land into adoption. Maredia (2009a) mentions that this 
approach may be helpful in obtaining an estimate of the effect of adoption on adopters, if 
the experiment is conducted with a sample of farmers who may potentially adopt the 
technology. 
 
Such a method is not advisable for the type of impact analysis being conducted by SPIA. 
The fundamental problem with this approach16 is that it does not estimate the effect of the 
technology for actual adopters (ATT), but rather the average effect (ATE) over an 
arbitrary set of farmers and pieces of land. As a result, there is little or no improvement 
over the on-farm trials discussed earlier in this paper. Restricting the sample of farmers to 
those who would normally adopt is not possible unless adoption is totally determined by 
observable characteristics, in which case an RCT would not be necessary because 
adopters and non-adopters could simply be compared after diffusion by using PSM. 
Furthermore, even if the set of adopters were known, the plots of land they would choose 
for adoption might differ from those selected for planting in the RCT. 
 
If it were certain that real-world adoption would only take place among those farmers in 
the sample with the highest returns to the technology, then the RCT might give a lower 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 Duflo et al. (2008) is not a paper about impact analysis in the sense that we are discussing here. Thus the 
“problem” mentioned is with using this methodology for task at hand, not with the methods as they are applied in 
the paper. 



22	  
	  

bound on the ATT because it includes farmers with low enough returns to deter adoption. 
But non-adoption could take place for a number of reasons [see Agricultural Technology 
Adoption Initiative (2010)] such that the estimated effect of the technology is not a lower 
bound. For example, if the farmers with the highest returns from adoption are also the 
most credit-constrained, then the ATE may underestimate the true ATT. Thus the result 
of a within-farm randomized design fails to bound the effect of the new technology. 
 
An RCT where technology is randomized within a farm may fail to induce farmers to act 
as they would if they had optimally chosen to adopt the technology. Farmers who have a 
small test plot assigned to a new technology may have little incentive to take the time to 
implement the technology carefully. NGO staff or extension agents who advise the 
farmers do not solve the problem, as this may induce behavior different than that 
exhibited by actual adopters. Inputs, both variable and fixed, may not be optimally 
adjusted on the treated plot.17 Thus even the ATE may not be estimated correctly. Hence 
this approach has problems with both internal and external validity that make it an 
untenable option for impact evaluation. 
 

2) One strategy for moving away from on-farm trials to a design that allows farmers to 
select into adoption is to offer a demand-side intervention that induces some farmers to 
adopt an available technology. Maredia (2009a) suggests a particular demand-side RCT, 
an encouragement design that pushes a randomly selected set of farmers to adopt. The 
basic idea behind encouragement designs is to use receiving the encouragement as an 
instrumental variable for adoption, then use two-stage least squares to obtain the effect of 
adoption on the outcome of interest.18 Other examples of demand-side instruments are 
random extension of credit to some farmers or randomized price subsidies through 
coupon distribution. 
 
Demand-side interventions will not recover the ATT of a new technology. Regressions 
using an instrumental variable obtain the local average treatment effect (LATE) of 
adoption, which is the average effect of adoption only for those induced to adopt because 
they received the treatment (Imbens and Angrist 1994).19 This makes demand-side 
instruments undesirable for two reasons. First, they do not estimate the impact of the 
technology for farmers who would have adopted even without the intervention. These 
inframarginal adopters probably differ substantially from those who only adopt due to 
receiving the treatment; they may have higher returns to the technology and thus 
rationally adopt without the treatment, or they may have lower returns but be less 
constrained in some way that allows them to adopt without having received the treatment. 
Second, the estimated effect is, by construction, only for farmers who would not adopt in 
the real world sans intervention. We know this because the LATE measures the 
difference in outcomes between marginal adopters due to treatment and farmers in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 Foster and Rosenzweig (2010) note, too, that changes in inputs allocated specifically to the test plot might be 
difficult to measure.	  
18 Encouragement designs are common in medical research, e.g. Hirano et al. (2000). Bradlow (1998) has a clear 
explanation of encouragement designs along with an application to marketing. 
19 A necessary condition for the LATE to be valid is that treatment not have an effect on the control group. This 
would be invalid in a demand-side intervention if, for example, the increased demand for a technology increased its 
price and caused some farmers in the control group to not adopt. 
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control group who are like them in every way except treatment status but who choose not 
to adopt. Hence, a demand-side instrument does not estimate the effect of adoption for 
any real-world adopters but does estimate the returns for some real-world non-adopters. 
This is a problem if we believe technology adoption is the result of optimization by 
farmers with respect to the expected gains from adoption. 
 
To illustrate this point further, we present a graphical representation of a simple 
encouragement design taking place within a village where the technology has just been 
introduced and is available to all farmers, and all farmers underestimate the benefits of 
adoption. Half of the farmers receive extension services explaining the technology’s 
benefits. We assume that farmers are risk-neutral expected profit-maximizers so that they 
adopt if and only if it increases their expected profits. We also assume adoption is a 
binary decision (yes or no). Figure 1 plots supply and demand for the technology. For 
simplicity, supply (S) is assumed to be perfectly elastic, e.g. offered at a uniform price set 
by the government. 
 
The demand curve for the control group is denoted DC. If adoption is binary, each point 
(q, p) on DC indicates the number of control group farmers (q) for whom expected profit 
gross of the technology cost is at least p. The encouragement intervention can be thought 
of as raising the expected benefit of adoption, which we assume (only for convenience) 
equates expected to actual profitability. Thus treatment shifts the demand curve for the 
treated group to DT. 
 
Of the control group, qC farmers adopt. Of the treatment group, qT farmers adopt, a higher 
number than in the treatment group. The important feature of this graph is the location on 
the demand curve of the farmers induced to adopt by the treatment (between qC and qT). 
These are farmers who have low net profits from adoption. Consider the implications if 
the researcher’s goal is to estimate the true impact of the technology on profitability in 
the real world (ATT). The correct measure of this is , which is the average 
profit from adoption for farmers who adopt without any demand-side intervention. But 
the LATE from two-stage least squares is , the average profit from adoption 
for those induced to adopt by the intervention. The graph shows clearly that the LATE is 
much smaller than the desired ATT, precisely because the LATE only measures the effect 
for the farmers for which benefits are the smallest. 
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3. Experiments (natural or controlled) in which the randomization occurs at the level of the 

household or plot are unlikely to result in reliable impact estimates. Randomizing at the 
plot level gives the problems discussed in point 1 from applying methods like those in 
Duflo et al. (2008). Randomizing at the household level has other problems, discussed 
here. 
 
The most serious issue with randomizing over households (instead of over villages, for 
example) is that adoption by some in the treated group will probably affect the outcomes 
of the control group. Such externalities invalidate comparisons between treated and 
control groups as a basis for estimating the effect of the new technology. Sections 2.6 and 
3.5 explained the problem of spillovers and how it affects current selection on 
observables approaches. The problems described in the latter section carry over even to 
otherwise well-planned RCTs where randomization of technology over households is 
explicit. 
 
To illustrate, we return to the example of tube wells in section 3.4. Suppose that instead 
of comparing adopters and non-adopters on observables, there were an RCT that took 
place at the time the technology was introduced. A group of farmers was selected for 
treatment in which they were visited by extension agents, told about the new technology, 
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and offered the necessary materials for sale. The control group was not visited. Baseline 
data was taken before any adoption and then a follow-up took place two years later to see 
how farm profitability and household consumption changed. 
 
Randomization does not solve any of the spillover problems discussed in the selection on 
observables case: wage effects, output price effects, mutual insurance effects, and usage 
of the wells by non-adopters. Any of these could be serious enough to limit the validity of 
the experiment. Spillovers within the village are a consequence of adoption itself, not the 
research design being used. They will exist within regardless of the researcher’s 
approach. 
 
A further issue with randomization at the household level is that, in many cases, farmers 
in the control group may gain access to the new technology and choose to adopt it even 
though it was not offered to them, a problem often referred to as contamination of the 
control group. This is particularly likely if the new technology is a farming technique 
rather than a physical input that is purchased. Adoption by control farmers is a problem 
because the estimated LATE no longer gives the effect for those who were induced to 
adopt by the offer of the technology compared to those who would have adopted if given 
the treatment. Instead it measures the effect for those induced to adopt compared to a 
mixture of adopting and non-adopting households. Dropping the adopting households in 
the control group from the sample prior to analysis does not fix the problem, because 
these may have indeed been the farmers that correspond to the adopters in the treated 
group. In this case, the treated adopters would be compared to control farmers who would 
never adopt—the wrong counterfactual group for estimating the LATE. 
 

4.3. Specific suggestions 
Having cautioned against several potential new approaches in impact analysis, we now present 
several suggestions for future work. The main purpose of these suggestions is to help in clearly 
identifying a counterfactual group against which to compare adopters, accounting for inevitable 
spillovers from adoption, and limiting contamination of the control group. 
 

1. Use natural or randomized experiments where the village or community is the unit of 
randomization. Doing so addresses the issue of spillovers not by ignoring them or trying 
to create an environment in which they do not exist, but rather acknowledging that they 
are potentially important results of adoption and incorporating them into the measured 
effect of the new technology. Randomizing at a level higher than the household has 
recently become standard practice among development economists when spillovers may 
be present. In the field of health, for example, Miguel and Kremer (2004) randomize drug 
treatment at the school level and Cohen and Dupas (2010) randomize mosquito net prices 
at the clinic level. In education, Muralidharan and Sundararaman (2009) and Kremer et 
al. (2009) randomize teacher and student incentives (respectively) at the school level. 
 
When randomization takes place at the village level in an RCT, two-stage least squares 
can still be performed using households as the unit of analysis, provided that the standard 
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errors are clustered at the village level.20 Clustering typically makes standard errors much 
larger and necessitates the inclusion of many villages in the experiment, which increases 
costs and leads to a much more expansive project. While this is an unfortunate 
consequence, the alternative of household-level randomization is a (potentially seriously) 
biased estimate of the effect of the new technology. 
 
When randomization takes place at the village level and individuals are the unit of 
observation, regressing the outcome of interest on treatment status gives the average 
effect of the treatment being offered, regardless of whether the treatment induces 
adoption. This is known as the intention-to-treat effect (ITT). The ITT is a useful quantity 
because it tells the average impact of the treatment per household regardless of adoption 
status, which can be used as a measure of the effectiveness of the treatment. The ITT 
accounts for all effects of the technology, both directly through adoption and through 
spillover effects on adopters and non-adopters. 
 
The LATE scales the ITT by the fraction of adopters, so it measures the effect of 
adoption per adopter. Because the LATE is just the scaled ITT, it still includes the effect 
of spillovers. Provided that the treatment induces adoption for all farmers who would 
adopt under real-world conditions while not inducing adoption for real-world non-
adopters, the LATE gives the desired quantity for impact analysis of a technology: the 
ATT plus the average spillover effect per adopter. This is the quantity whose estimate can 
be multiplied by the total number of adopters after diffusion has taken place to arrive at 
an estimate of the aggregate impact of the technology. 
 
In the case of an RCT, village-level randomization also ameliorates, to some extent, the 
ethical dilemma presented by Maredia (2009a) where some farmers are offered a 
technology while it is withheld from others in the same village. Withholding treatment 
from some villages is a less artificial act, as the number of treated villages is likely to be 
determined by budget constraints and treating any of the control villages is infeasible. Of 
course, data collection must still take place in the control villages, so if the marginal cost 
of distributing the technology during surveying is low, then the artificial withholding of 
treatment is still an issue. 
 
A further benefit of including many villages in an evaluation is that the effect of the 
technology is estimated using several geographically distinct locales. This adds a degree 
of external validity to the results, as the estimates are based on the results of adoption 
across locations with potentially heterogeneous effects from adoption. For example, if the 
new technology is only useful when rainfall is scarce (such as a drought-resistant seed 
variety), then measuring the effects of adoption only in a village that experiences 
plentiful rain will not reveal the true returns of adoption. A study covering many villages, 
however, could observe a whole range of rainfall levels and obtain an estimated effect 
closer to the true quantity. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 See Cameron and Trivedi (2005) for a technical but approachable review of clustered standard errors, which is 
beyond the scope of this paper. 
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2. Use supply-side interventions where the new technology is introduced to entire villages. 
Village-level clustering is not sufficient to recover the desired 

 estimate because it does not ensure that adoption due to the 
treatment corresponds to those who would take up the technology under true market 
conditions. For this reason, the treatment should simulate the introduction of the new 
technology on the market as closely as possible. The simplest example of this in the 
setting of an RCT is to choose a set of villages that do not have the technology and 
randomly choose a subset of villages in which to sell the technology at the “market 
price.” Adopters are then the entire set of farmers who find it optimal to adopt when the 
technology is available for purchase, i.e. those who purchase under real-world conditions. 
The LATE is as desired: the effect of the technology, , 
when the technology is made available for sale. 
 
It is important to note that not all supply-side interventions yield the correct LATE. If the 
product is already available in villages and the intervention is a subsidy to sellers that 
shifts supply of the technology upward, then the analysis suffers from problems similar to 
those discussed with demand-side treatments. Only the effect on marginal adopters is 
estimated. Thus it is important that the supply-side intervention be the relaxation of a 
supply constraint so that villages with no access to the technology are given access at 
market prices. 

 
3. Do not limit research designs to RCTs. Natural experiments can yield reliable estimates 

of impact even in the absence of controlled, explicit randomization. There are situations 
in which an RCT is a plausible option that should be pursued. If a new technology must 
be rolled out over time due to supply constraints, randomizing the villages receiving the 
technology at each phase of the rollout may be a simple and feasible task that provides 
precisely the supply-side RCT necessary for estimation of the technology’s impact. 
 
In other cases, it is not possible to plan and carry out an RCT. There may still be 
opportunities for good impact analysis, however, but some creativity is required. Rollouts 
of a technology that were arguably random, even if they were not explicitly randomized, 
can be analyzed in a similar way as RCTs. The assumption of randomness in the rollout 
cannot be fully tested, so it is important that researchers with institutional knowledge of 
the technology and its rollout process provide guidance on how the rollout occurred. 
Provided that the necessary data are available, treating the rollout process as a natural 
experiment allows for the analysis of technologies that have already been diffused. This 
is a distinct advantage over RCTs, which are only possible for new technologies. 
 
Other kinds of natural experiments may be usable as well. A geographic discontinuity 
approach may be possible when a specific area is chosen for diffusion of the technology. 
Provided that the boundary defining who receives the technology is not physically or 
politically important such that villages on either side of the boundaries are very different 
from each other, these two groups of villages can be compared, with lying on the 
“diffusion side” of the boundary used as the indicator of treatment. The natural 
experiment is that, since the boundary is assumed to be arbitrary, lying on one side of the 
boundary or the other is essentially random for villages near it. Regression discontinuity 
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methods might be applied in order to account for differences between the two sides of the 
boundary due to continuous changes in village characteristics over space.21 
 
An example in which a boundary discontinuity design could be successful is the 
introduction of technologies that control striga hermonthica, a pest plant that has spread 
widely in Africa and suppresses yields in affected areas (Berner et al. 1994). Striga 
infestation spreads from afflicted areas by wind, livestock droppings, and sale of 
contaminated seed at markets. In an infested area, there may be a geographical frontier 
between those areas that are infested and those that are not yet, with the frontier 
advancing from year to year. Suppose that researchers map the infestation frontier and 
collect baseline data on crop yields (and other outcomes), prior to the introduction of a 
new striga control technology (whether chemical or biological) for sale to farmers. 
 
Figure 2 gives a stylized illustration of the geographic discontinuity design that could be 
used in this context. The "T" villages are those affected by striga, which are those places 
where the new technology is offered for sale. The "U" villages are still unaffected 
because the infestation has not reached them yet. The boxed “U” and “T” villages form 
the treatment and control groups under consideration, because they are close enough to 
the boundary that they are probably comparable along all dimensions except that striga 
has not yet reached the "U" villages. 
 
The effect of the technology can be estimated with a difference-in-differences method 
that uses introduction of the technology as an instrument for adoption, then compares the 
change in yield for the baseline-infested (treated) areas to the baseline-uninfested areas 
(control). The intuition is that in the absence of infestation, changes in yield over time 
between the treatment and control villages would be similar. Then the DD estimator 
recovers the average change in yield due to adoption, because the uninfested area is an 
appropriate counterfactual. Note that while no randomization of treatment is necessary 
for this evaluation, it is necessary to have baseline data for both treatment and control 
areas, as well as follow-up data after adoption has occurred. 
 
 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21 Imbens and Lemieux (2008) provide a useful guide to regression discontinuity designs. 
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Needless to say, the list of possible research designs is longer than RCTs, arguably 
random rollouts, and geographic discontinuities. The key is to remain creative in thinking 
of sources of random variation in supply of the new technology. These unique research 
designs will be case-specific and require intimate knowledge of the technology’s 
introduction and subsequent diffusion. Brainstorming involving economists as well as 
staff involved closely in the technology’s development and release will provide a good 
opportunity to find these opportunities. 
 
Whether using PSM survives as a viable strategy is dependent on the details of the 
technology’s diffusion process. The only situation in which PSM is obviously suitable is 
when availability of the technology in villages is as good as random after conditioning on 
observable characteristics of the village. This does not seem likely, but if the researcher 
can justify such an assumption, PSM could be a useful approach. 

 
4. Leverage public-private-NGO partnerships to perform supply-side interventions. The 

best-case RCT is random introduction of the new technology into villages. A potentially 
attractive means for doing this is to pursue partnerships between the originator of the 
technology and those entities that are already on the ground distributing the technology, 
whether private dealers or NGOs. In the case of seeds, partnerships with local agro-
dealers could provide a fruitful collaboration for introducing new varieties to selected 
areas. Small agro-dealers already provide agricultural inputs in many villages so they are 
a natural channel for distributing new varieties to farmers. 
 
An RCT including agro-dealers in the supply chain would need to do two things with 
respect to distribution of the new seed variety. First, it would have to make the new 

T: treated 
U: untreated 
 
     : in sample 
 

Figure 2 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

T 

T 
T 

T 

T 

T 

T 

T 

T 
T 

T 

T 

boundary of infestation 



30	  
	  

variety available to a random subset of dealers. Second, it would have to provide 
adequate incentive for dealers to actually buy the seeds and offer them for sale to farmers 
in their territories. The former should be simple in most cases, as agro-dealers already 
form part of a supply chain. The latter can be accomplished by subsidizing the wholesale 
price of seeds for dealers. 
 
An advantage of releasing the new technology through agro-dealers is that farmers are 
already used to buying from them. As well, prices are set according to market forces 
because the dealer has a profit motive. This makes observed adoption more reliable than 
interventions that push new technologies by methods outside of the traditional supply 
chain. After all, once the rollout is complete, regardless of the method, it is likely that 
dealers will be the suppliers. Incorporating them into the process at the evaluation phase 
is a natural way to accurately estimate the effects of the new technology. 

 
5. Plan the evaluation before, and conduct it during, diffusion of a new technology. The fact 

that impact analysis is referred to as ex post should not suggest that they should be 
planned and performed after the fact, a point made clearly by Maredia (2009). Baseline 
surveys that accurately reflect pre-adoption outcomes must be undertaken prior to 
diffusion, and these may take some time to carry out. It goes without saying that an RCT 
requires much advanced planning prior to rollout of the technology, but even if the 
rollout is not explicitly randomized, any follow-up surveys taking place during the rollout 
must be ready for administration. 
 
Failing to plan the evaluation ahead of time has multiple negative consequences. The first 
is that it may result in a lack of appropriate baseline data for pre-adoption characteristics 
of farmers and villages. The second is that it may cause the researcher to miss a chance to 
implement a clear research design. The last is more subtle. It may be that there is a push 
to evaluate technologies that are perceived to already have been successful. By planning 
and executing impact analyses even for projects that are not perceived to be successes, it 
is possible to obtain a better picture of the returns to the entire portfolio of projects. 
Evaluating only the most successful projects may give a skewed view of technological 
“successes” and “failures.” 
 

 
5. Example Applications 
The goal of this section is to give concrete examples of impact analyses that could be undertaken 
using the methods discussed in this paper. Each uses a new technology that has been developed 
in collaboration with a CGIAR research center and proposes a way to evaluate its impact as it is 
rolled out. It should be noted that these proposals are for new technologies that have not yet been 
completely diffused. This is not a coincidence: the best applications are those for which 
evaluations take place as the technology is rolled out. 
 
5.1. Example: genetically improved farmed tilapia (GIFT) 
Worldfish Center, along with other organizations, has spent decades using selective breeding to 
develop "better" farmed tilapia. The fish "seed" are distributed through public-private 
partnerships in many countries, mostly in Southeast Asia. Adoption has been most successful in 
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the Philippines and Thailand. Distribution in Bangladesh has been logistically difficult, resulting 
in very little adoption. Adoption in Vietnam has had some success, but there appears to be room 
for more growth. 
 
Previous impact evaluation, summarized in an Asian Development Bank report (Operations 
Evaluation Department 2005), has mostly relied on experiment station and on-farm evaluations 
of differences in yield (weight at harvest) and surveys of fish farmers for information on 
profitability. The report states that the yield numbers are controversial, highly debated, and not 
carefully peer-reviewed.  
 
Because the ADB report mentions explicitly that there have been supply-side constraints in 
Bangladesh, an RCT in Bangladesh may be appropriate for assessing the impact of GIFT on such 
outcomes as yield, income, farm profits, and poverty. While the estimated impacts would be 
specific to Bangladesh, the results may be applicable to some extent to countries where diffusion 
has already been successful. The first step of the evaluation would be to identify a random subset 
of villages or communities that are engaged in tilapia farming and randomize them into treatment 
ad control groups. Then a baseline survey of household and farm characteristics would be 
conducted. 
 
In the case that public-private partnerships are viable in Bangladesh, aquacultural supply dealers 
in or near villages selected for treatment would be offered the GIFT seed and offered monetary 
incentives to sell the new variety. This would both make supply available to dealers and ensure 
that they actually offer the GIFT for sale so that farmers have a chance to adopt it. If private 
partnerships are infeasible but NGO or governmental involvement is strong, these groups could 
offer extension services that sell GIFT in the treated villages. Control villages would experience 
no changes. After a period of time long enough for farmers to purchase, use, and realize the 
benefits and costs of the new variety, a follow-up survey would be conducted. 
 
For the empirical analysis, the dependent variable would be the change in outcome (yield, 
income, profit, consumption, etc.) between baseline and follow-up surveys. The variable of 
interest, adoption of the GIFT variety, would be instrumented by a variable equal to 1 if the 
village was offered GIFT seed and 0 if the village was a control. The estimated coefficient on 
adoption would then give the effect of adoption on adopters (ATT), plus any spillovers induced 
by adoption. After diffusion took place, this measure could be projected on the measure of 
adoption to estimate the total effect of the GIFT program in Bangladesh. In addition, the 
projection could be made onto the measures of adoption in other Southeast Asian countries to 
arrive at an estimate of GIFT’s impact in the region. 
 
It is not clear how much learning-by-doing there is in tilapia farming or how fast adoption would 
take place. If these are thought to be important factors, then follow-up surveys could take place 
over multiple years to estimate the path of adoption and outcomes over time, provided that the 
control group did not obtain the GIFT technology in the meantime. 
 
5.2. Example: goat parasite treatment 
In the past decade, the Australian Centre for International Agricultural Research (ACIAR) and 
International Livestock Research Institute (ILRI), among others, undertook a program to educate 
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Filipino farmers about the serious problem of parasites in goats, and to teach them strategies for 
preventing mortality from parasites. This is documented in a report by ACIAR (Montes et al. 
2008). After researching optimal procedures and technologies for preventing and fighting 
parasites, they performed outreach activities in the form of intensive "farmer livestock schools" 
funded by national and local governments. Farmers invested their time and effort into these 
classes as well as purchasing de-worming drugs and investing in on-farm improvements. The 
focus was on non-chemical means of control, partly because drug-resistant worms are becoming 
a serious problem. 
 
Previous impact analysis has attempted to estimate the ATT through a case study with very few 
animals. This ATT does not necessarily reflect the impact of the methods because it is not clear 
that it represents the outcomes under actual ranching behaviors. These benefits were then 
projected onto the population by using the estimated adoption rate in the regions included in the 
program. 
 
The technology being evaluated is a package of livestock management techniques taught by the 
schools. A simple impact evaluation of this technology would select a group of villages or 
communities where goats are raised, then randomly offer field school classes to a subset of them. 
This should be done only in parts of the country that have not yet been exposed to these schools, 
as the program initially took place only in two regions but would be suitable for other areas of 
the country as well. After the classes conclude and sufficient time has passed for farmers to fully 
implement their new techniques, follow-up data could be collected on farm-level outcomes. 
 
An analysis that randomly offers classes in new regions would have two effects of interest. First 
is the reduced form effectiveness of the schools themselves in changing outcomes. This can be 
obtained by regressing outcomes of interest (profitability, herd mortality, etc.) on the presence of 
a field school. The second effect of interest is from an IV regression using the school's presence 
as an instrument for farmers’ adoption of the new techniques.  
 
An obvious concern with this approach is the potential for spillover of knowledge between 
communities where the schools are offered and those where there are no schools. The 
seriousness of this problem depends on how geographically distant the communities are and how 
much they interact. It does not seem that the spread of parasites between different farmers' herds 
is an important issue. Even in the presence of externalities of this sort, an RCT would still be 
useful. If there is no externality, then the IV regression yields the pure ATT of the new 
techniques, while if there are externalities, the IV regression gives the ATT plus the impact of 
the externalities from adoption. 
 
5.3. Example: drought tolerant maize varieties 
The Drought Tolerant Maize for Africa (DTMA) Project is a major ongoing effort by CIMMYT 
and IITA to introduce drought tolerant (DT) seed varieties throughout Africa.22 The DTMA 
claims that the gains from introduction of DT varieties will lead to yield advantages of up to 34% 
over improved but non-DT varieties (Rovere et al. 2010), with up to 50% advantages during 
drought seasons. This is an ex ante estimate from field trials, so it is important to evaluate such 
claims under real-world adoption as the program progresses and diffusion takes place. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22 For more information about DTMA, see http://dtma.cimmyt.org. 



33	  
	  

 
A straightforward RCT supplying new seed varieties to a random subset of agro-dealers could be 
used for such an evaluation. Indeed, given that the project is still at a relatively early stage, this 
could prove to be an excellent candidate for an RCT evaluation. There is an additional approach 
that may be useful, though, and we illustrate it here as an example of using a natural experiment 
to evaluation technologies. 
 
Drought tolerance is a risk-reducing technology it is designed to limit yield losses in times of 
drought rather than increase yields in times of adequate rainfall. As discussed in section 2.1, 
evaluating this technology requires that drought actually occur for some of the farmers involved 
in the evaluation. Our suggested approach will be to compare DT adopters in areas with equal 
levels of drought risk, but for which some experienced drought and others did not. A difference-
in-differences estimator that controls for ex ante drought risk can be used to obtain estimates of 
the yield effects (and other outcomes) for actual adopters. In this case, the randomization 
required for identification in a natural experiment comes from rainfall shocks. 
 
The first step of this evaluation would be to identify a sample of farmers who have adopted new 
DT varieties made available by DTMA. Farmers should be within a similar agroecological zone 
(although the evaluation could include comparisons within several zones) but who are far enough 
apart that there will be variation in realized rainfall and drought between farmers. To keep this 
example simple, we will limit the sample to farmers who did not experience drought at baseline. 
This has the advantage that we do not have to worry about comparing farmers who experienced 
the negative consequences of drought (such as lack of liquidity for investment in the upcoming 
season) to those who did not. 
 
The next step would be to compile fine-grained historical rainfall data for the areas in the 
sample. This data would be used to estimate the drought risk for each farmer in the dataset. As a 
final piece of data collection, a follow-up survey of all farmers should be carried out after one or 
more post-baseline seasons have passed. 
 
The econometric strategy is to compare adopters with similar levels of drought risk but for whom 
realized drought outcome differed. This can be done either with OLS or with PSM. Indeed, this 
is a good example of the proper use of PSM, since matching between drought and non-drought 
farmers would take place on the estimated probability of drought. The key assumption for this 
analysis to be valid is that risk of drought is well-predicted by past drought occurrence, so that on 
average, adopting farmers with equal predicted drought risk are comparable. After matching 
farmers on the basis of drought risk, the difference-in-difference estimator can be used to see 
how the change in yield over baseline differed by drought status. The average of this difference 
is the yield advantage of the technology under drought conditions. 
 
This estimate can then be multiplied by the average probability of drought to obtain the expected 
annual yield gain from adoption for adopters. A similar method could then be used to estimate 
impacts for profits, income, and poverty status, provided that sufficient data were collected. 
Adoption effects could then be disaggregated on the basis of drought risk. The effect for farmers 
with relatively low drought risk might be compared to those with high risk to see if the realized 
gains during drought seasons are the same. Stratifying the matching on other household 
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characteristics such as gender of household head or education level could give effects for 
different subpopulations, giving a richer view of the distribution of the technology's impacts. 
 
The key aspect of this example that makes a natural experiment feasible is that rainfall and 
drought are basically random after conditioning on the past history of rainfall. The fact that the 
technology's benefits are activated randomly allows us to compare adopters to other adopters. 
We are not matching on the basis of a choice variable, but rather on an arguably exogenous 
variable, drought risk. 
 
6. Long-term and aggregate effects  
 
6.1. The challenge of estimating long-term and aggregate effects. 
Econometric methods so far discussed can be used to establish the impact of technology adoption 
on outcomes at the producer level.  These outcomes can be of different types (yield on the plot, 
production on the farm, welfare of the household, or labor demand), but in all cases we are 
measuring impact on the units of observation that were used in the statistical analysis.23 These 
units could possibly be a village, but will never be very big by the simple fact that statistical 
analysis requires among other things a very large number of observations. In addition, such 
impact can only be measured when the diffusion of the technology is not so complete that one 
can find counterfactuals unaffected by the technology. So impact analyses can only be done 
before sector-wide or economy-wide effects have taken place if the implementation or even the 
data collection require some design.    
 
On the other hand, we are often interested in measuring ex-post the aggregate benefit of a 
technology that has diffused over large areas.  In this case, the overall impact of the technology 
should capture the changes that occurred in aggregate supply, demand, and price in the sector.  
And if the sector is large enough, with spillovers on the input markets, employment, and income 
effects, the impact analysis should also include general equilibrium effects.  There is of course 
no counterfactual situation that can be observed, and hence researchers will resort to different 
types of analyses.  One of them is to focus on smaller units of observations (such as villages) on 
the presumption that markets are not well integrated so that they each represent a small 
“economy” and rely on econometric analysis of the observations over time to identify the causal 
effect of an uneven development of technological change on these units.  The second type of 
analysis is to resort to simulation models to extrapolate impacts measured at the micro-level 
(most often increases in yields) to the level of aggregate effects.   
 
6.2. Estimating the effects of technological change with long panel data 
This is best illustrated by the body of work of Foster and Rosenzweig on the effects of the Green 
Revolution in India (Foster and Rosenzweig, 1996, 2003, 2004). Starting in the mid-1960’s with 
the introduction of new hybrid seed varieties, the Green Revolution led to significant 
improvement in crop yields over a long period of time.  An important aspect of the Green 
Revolution experience is that it progressed in different parts of the country at a different pace, 
creating the opportunity of analyzing its effects in a panel setup. A simplified model that 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23	  With	  similar	  methods	  one	  can	  measure	  the	  impact	  at	  the	  consumer	  level,	  on	  health	  for	  example.	  
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captures the essence of the methodology for measuring the impact of yield improvement on 
household or village level outcomes is written as: 
 
 Yivt = !yieldvt + Xivt" + µi +# t + $ ivt  
 Yvt = !yieldvt + Xvt" + µv +# t + $vt  
 
where Yivt Yvt( )  are outcomes of interest at the household (village) level, yield  is an index of yield 
at the village level, X are control variables, µv µi( )  are fixed household (village) effects, ! t  fixed 
time effects, and !  error terms. The yield index is a Laspeyres index of village level yield on 
irrigated HYV crops. Foster and Rosenzweig use a panel of about 4,000 households from 250 
villages with 3 rounds of observations in 1971, 1982, and 1999.   
 
With spatial and time fixed effects, the identification of the impact of an increase in yield comes 
from the differential changes in yields across villages. In some specification, the time fixed effect 
is state specific, focusing the identification to the differential pace of yield improvements across 
villages within a state. Outcomes of interest are for example agricultural income, non-farm 
income, or total income at the household level, and rural wage, non-farm employment, total 
income, or poverty at the village level. 
 
A couple of issues are worth noting: 
 
a) The yield index used in the equation is affected by more than technological change.  It results 
from technological change as well as from changes in productive inputs, such as fertilizer, labor, 
or education, all possibly influenced by technological change, but also by other factors.  So there 
may be some concern that changes in the yield index at the village level capture those other 
factors correlated but not due to technology change.   
To circumvent this problem, Foster and Rosenzweig (1996 and 2003) recover a district-year 
specific technology factor from the estimation of a farm level profit function, and then 
instrument yield with this technology factor and some village characteristics. 
 
b) The estimation measures the effects of relative changes in yields across villages, but not the 
nation wide or state level aggregate effects of technology change.  For example, the extent to 
which the Green Revolution brought about a large decline in prices over all India, and by this 
reduced poverty, is captured by the time fixed effects and not attributed to the changes in yield.   
 
Still, this approach goes a long way toward getting at the aggregate and long-term impact of a 
large technological change such as embedded in the Green Revolution. Note however, that the 
analysis is very demanding in terms of data, as it requires a large enough sample of observations 
representative of the aggregate area of concern, over a long period of time that covers the 
technology diffusion period, and detailed farm data that allow extracting the role of technological 
change from observed yields.   
 
6.3. Extrapolating micro results with partial equilibrium simulation models  
A second type of analysis uses simulation models. These simulations translate or extrapolate the 
(estimated/measured) microeconomic effects into some aggregate number, based on assumptions 
on the sector or the economy at large.  They rely on functional form assumptions, assumptions 
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on supply and demand elasticities, and strong assumptions on the functioning of the markets. 
Hence, in no way can these models be considered to estimate an aggregate impact in the same 
sense as econometric methods. On the other hand, they are a powerful way of translating micro-
level estimations into plausible orders of magnitude of macro effects, if done with care and with 
enough sensitivity analysis.  
 
The most common of these simulation models is the economic surplus approach, based on a 
partial equilibrium model of the sector in which the technological change has occurred.  The idea 
is that technological change induces a shift in the supply curve, which in turn induces a decline 
in price and a new equilibrium on the market.  The economic surplus is calculated as: 

 ES = pqk 1+ 1
2

k
! s + ! d

"
#$

%
&'

, 

where p and q are the price and quantity of the commodity of interest, k is the proportional shift 
in the supply curve induced by technology change, and ! s  and ! d  are the supply and demand 
elasticities.   
 
The key input to this simulation is of course the k factor, i.e., the direct effect of technological 
change on the supply curve.  The factors that allow the extrapolation from k to the value of the 
economic surplus are the observed total output and price, and the assumed elasticities (usually 
drawn from some other studies). 
 
This k factor is determined by the combination of changes in yield and in costs.  Pictured on a 
supply curve, changes in yield are horizontal shifts, while cost reductions are vertical shifts, 
which can be made equivalent to proportional yield change with the supply elasticity.  Most 
studies focus on increases in yields. Changes in yields themselves are drawn from either field 
trials or observational differences in yields between crop varieties. Neither one is very 
satisfactory.  What is needed is an estimated supply shift or yield increase that can be causally 
attributed to technological change. Hence the challenge is nothing less than what has been 
extensively described in the previous section on estimating impact of technology on yield.   
 
The method has been extensively used in ex-post studies, computing time series of economic 
surplus based on observed output and prices, and assumed elasticities, and then aggregating the 
results over years to compute the aggregate effect.  In many of these studies, the principal effort 
has been to measure the area (and output) affected by the specific technological change of 
interest, notably the development of certain varieties by the CGIAR (Byerlee and Traxler, 1995). 
Some studies run sensitivity analyses to the assumed elasticities. The method is also used in ex-
ante studies, based on field trial for specific varieties (Falck-Zepeda et al., 2007) 
 
Poverty simulation 
One more step has also been taken in applying a “poverty elasticity” to the calculated aggregate 
production increase or welfare effect to obtain an impact on poverty (Fan et al., 2005; Alene et 
al. , 2009). The key question of course is how the poverty elasticity has been estimated, if it 
applies to this specific context, etc. Obviously, the poverty effects of an increase in aggregate 
welfare depends on who benefited from the increase in economic surplus, large producers, small 
producers, urban consumers, etc., and their initial poverty levels. So it seems a bit of a stretch to 
conduct a simulation exercise by applying a poverty elasticity estimated in a different context to 
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an aggregate increase in production.  Poverty impact should be addressed with rigorous 
econometric analysis like those discussed in section 6.2. 
 
In conclusion, the validity and usefulness of these simulations is the validity of the elements that 
enter in the simulations.  It is therefore critically important that the k factor be rigorously 
estimated, and that sensitivity analyses be made on the elasticity in the economic surplus 
simulations, and that it be clear that these are useful simulations but not impact estimations.   
 
6.5. Computing aggregate impacts with general equilibrium simulation models  
Going beyond the sector model discussed in the previous section, researchers have used general 
equilibrium models for cases where the change in technology is sufficiently large that it induces 
effects on trade, and on output and input markets that, in turn, may induce spillover effects on 
other sectors (Arndt et al., 1999; Dorosh and Thurlow, 2009; Diao et al. 2010). The most 
commonly used type is the CGE, a general equilibrium model in which supply and demand on 
all markets are balanced with endogenous price, although a few studies use the SAM multiplier 
model, a Keynesian demand-driven general equilibrium model with excess supply in all markets. 
 
CGEs are essentially a system of markets that reach equilibrium through prices.  Very broadly 
speaking, they consist in: (i) supply functions for each sector of the economy, derived from 
production models that are usually some combination of a CES aggregate in primary factors of 
production and Leontief technology for intermediate inputs, (ii) demand functions emanating 
from households (using some standard demand system), and (iii) markets that most often balance 
with flexible prices. CGEs were initially developed for, and remain strongest in, the modeling of 
trade. Foreign goods and domestic goods are imperfect substitutes (using CES and CET 
functions), which also lead to specific demands for imports and supplies for exports in response 
to the relative price of foreign and domestic goods.  The rest of the model includes government 
and institutions that tax or distribute mostly with fixed shares (for example return to labor or to 
capital in each sector is allocated in fixed proportions across households, etc.).  Sectors thus 
compete through their interactions on the input and factor markets.  The data needed for such 
models are essentially a static picture of all the flows in one particular year (the SAM of social 
accounting matrix) from which all shares are derived and four sets of elasticities: (i) elasticity of 
substitution between factors in the production function, (ii) demand elasticities (or more 
specifically parameters of a consistent demand system) for households, (iii) elasticity of 
substitution between imported and domestic goods, and (iv) elasticity of transformation between 
commodities for the domestic markets and exports for each sector. CGEs can have different 
levels of disaggregation (number of sectors, number of household types), and because elasticities 
are rarely estimated and most often “guessed”, they face a difficult tradeoff between gaining 
details in shares and having to rely on an increasing number of assumed elasticities.  Most CGEs 
are static models, although some have updating of capital stocks, labor supply, and possibly 
technological factors that make them sequentially dynamic, with however an additional set of 
assumptions needed for these updating.  In some models, there is an attempt at capturing the 
particularity of self consumption (Ardnt et al., 1999), or to link micro-simulations applying the 
results obtained in CGE to individual households and by this obtaining a better measure for 
poverty effects (Diao et al. 2010). 
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The advantages of CGEs are their consistent framework that forces markets and budgets to 
balance and their anchoring of all simulated effects on the observed initial relative sizes of 
sectors and commodities. However, the extent of what is assumed in these models (in terms of 
the way markets function, the representation of the agents that make choices, the existence of 
transactions costs and constraints, heterogeneity across producers, etc.) make them better 
instruments for discussion of alternative broad policy choices than for actual predictions of the 
effect of specific shocks like a technological change. A frequently cited article that uses 
archetype CGEs for the purpose of illustrating the different channels by which an agricultural 
technological change affect the rest of the economy (de Janvry and Sadoulet, 2002) is just that, 
an instrument meant to exhibit the different channels that are incorporated in a CGE and to show 
how their relative importance varies with the relative openness of the economy, the 
substitutability between foreign and domestic goods, and the functioning of the market. Stark 
contrast can then be shown across archetypes that represent a South-Asia or a Sub-Saharan 
context. Sensitivity analysis shows qualitative results to be robust, but quantitative results cannot 
be taken too seriously.  In the application that is the focus of this paper, namely measuring the 
impact of a technological change, what CGE simulations can do is not very clear.    
 
7 Conclusion and recommendation 
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