



#### TECHNOLOGICAL PROGRESS IN THE BRAZILIAN AGRICULTURE, POVERTY AND INCOME DISTRIBUTION EFFECTS.

Joaquim Bento de Souza Ferreira Filho Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz".

## Objective

- Present a methodology which allows the extension of traditional aggregated welfare analysis to a detailed analysis of impacts on poverty and income distribution.
- Present a case study on technological change in the Brazilian agriculture as an illustration.

## Partial equilibrium methods

- Usual assumptions for technological change (TC) evaluation:
  - One market at a time.
  - Prices in other markets fixed.
  - Do not take into account <u>vertical effects</u>: linkages between primary production and upstream and downstream markets.
  - Do not take into account <u>horizontal effects</u>: competition in the factor markets, products substitution.

## Effects of TC in agriculture: complex.

- Reduction in food prices: gains are transmitted in the commercialization chain.
- What about the factor markets? For a given production, the TC reduces demand for factors of production, including labor.
- There is a potentially negative social effect: which factors go unemployed? What happens to their prices?
- These effects are complex.

## The General Equilibrium approach

- Overcome the previous limitations in reproducing the circular flow of funds in the economy.
- Explicitly models factor and product markets.
- Takes into account:
  - the inter-sector relations in the markets.
  - the consistency of aggregated flows in the economy (macro equilibrium).
- This paper uses a Computable General Equilibrium approach:
  - TERM-BR: a CGE model of Brazil
  - A micro-simulation model tailored for poverty and income distribution analysis.

#### The TERM-BR model: main aspects



Calibrated with Brazilian 2004 data: IO tables, household surveys, expenditure surveys, other sources

- Micro-simulation module:
- 283,363 adults;
- 121,849 households;
- 41 activities;
- 41 commodities;
- 27 regions.
- 270 different expenditure patterns;

#### Employment change in the model: jobs allocation



Why it is so important? Share of poor persons as a share of regional population



Washington, December 2010

#### Labor demand structure in Brazil, 2004



Washington, December 2010

Household income composition. Brazil, 2004



Washington, December 2010

#### Scenario to be simulated

- Based on Bonelli and Fonseca (1998) and Gasques et al (2004) studies for the nineties.
- Agriculture TFP rate of growth: 2% above manufacturing.
- Five years period, starting in 2004: a 10% TFP productivity shock in agriculture and livestock sectors.
- Non-biased TC: crucial for income distribution analysis.

## Model closure

- Capital stock fixed at sector level.
- Lowest 5 occupational types: mobile between regions and sectors. Unemployment.
- Highest 5: total supply fixed at national level, mobile between sectors and regions.
- Land stock fixed by state.

#### Hicksian Equivalent Variation

- R\$12,996.00 millions gain in 2004 values (5 years). This corresponds to 0.67% of the Brazilian GDP in 2004, or a gain of about 0.11% of GDP per year (R\$2.6 billions per year).
- This is the kind of result we could get without the microsimulation module.

## Model results

| Wage class           | Nominal wage | Real wage | Employment |
|----------------------|--------------|-----------|------------|
| OCC1 (lowest wage)   | -1.33        | -1.25     | -0.63      |
| OCC2                 | -1.01        | -1.01     | -0.51      |
| OCC3                 | 0.32         | 0.27      | 0.14       |
| OCC4                 | 0.06         | 0.00      | 0.00       |
| OCC5                 | 0.31         | 0.24      | 0.12       |
| OCC6                 | 1.33         | 1.26      | 0          |
| OCC7                 | 1.47         | 1.40      | 0          |
| OCC8                 | 1.53         | 1.46      | 0          |
| OCC9                 | 1.63         | 1.55      | 0          |
| OCC10 (highest wage) | 1.04         | 0.96      | 0          |

Table 1. Model results. Wages and employment, by occupational class. Percent variations.



Model results. Employment and Regional GDP. % variation.

Employment Regional GDP

# Tracking back labor to households: Poverty and income distribution results

| Household Income  | Average real |                   | Proportion of poor           | Average poverty   |
|-------------------|--------------|-------------------|------------------------------|-------------------|
| class             | income       | GINI              | households (headcount ratio) | gap (FGT1)        |
|                   |              | Index             |                              |                   |
| 1 POF[1]          | 2.00         |                   | -0.70                        | -0.31             |
| 2 POF[2]          | 0.10         |                   | -0.39                        | 2.49              |
| 3 POF[3]          | 0.27         |                   | -1.40                        | 10.04             |
| 4 POF[4]          | 0.56         |                   | 9.91                         | 42.25             |
| 5 POF[5]          | 0.71         |                   | 27.97                        | 97.08             |
| 6 POF[6]          | 0.90         |                   | 196.58                       | 896.91            |
| 7 POF[7]          | 0.96         |                   | 502.78                       | 67559.20          |
| 8 POF[8]          | 1.00         |                   | 0                            | 0                 |
| 9 POF[9]          | 0.95         |                   | 0                            | 0                 |
| 10 POF[10]        | 0.78         |                   | 0                            | 0                 |
| Original values   | -            | 0.55              | 0.28                         | 0.12              |
| (base year)       |              |                   |                              |                   |
| Percentage change |              | <mark>0.35</mark> | <mark>-0.29</mark>           | <mark>1.35</mark> |

#### Table 1. Poverty and income distribution results. Percent variation.

Change in poor households, by regions.



![](_page_17_Figure_0.jpeg)

### Final remarks

- CGE models can presently deal with poverty and income distribution analysis with great level of detail.
- The crucial point for the analysis is the precise identification of which type of technological change is at work.
- What if we had biased (labor saving) tech change?
- What if the TC rate is not uniform across regions?

#### Email: jbsferre@esalq.usp.br