

Climate Change Mitigation and Adaptation

Sujata Visaria SPIA Panel Member

SPIA Side-event, Berlin, December 2024

Motivation

The Challenges of Climate Change in Global South

Climate Smart Agriculture	MitigationAdaptation
• Focus • (nnovations addressing these challenges mpact & adoption in short & long term SPIA & SPIA-funded research)

rising temperatures

increasingly variable rainfall

salinity risk

Bigger Picture

• Key learnings

Framework

Mitigation

Alternate Wetting and Drying (AWD)

Cyclical pattern of flooding & drying rice fields:

- Reduces water use & methane emissions
- Maintains yields

Bangladesh

Chakravorty, Dar and Emerick (2023)

- On average AWD is not taken up.
- But if pricing is volumetric, training farmers in AWD reduces water use by 19% & lowers farmer costs

How to encourage adoption?

Institutionally difficult to change pricing Different incentives for different farmers Fairness concerns Vietnam

SPIA Vietnam Report (2024)

- Irrigation is controlled by cooperatives
- So might expect faster adoption
- Yet, SPIA (2023) finds low adoption rates:
 - 14.7% of EAs ≥1 farmer
 - 5.4% farmers

What limits adoption?

Need to investigate at community level

CGIAR Standing Panel on Impact Assessment

Drought-Tolerant Maize

Adaptation

Stress-tolerant variety, protects against moderate mid-season drought

Ethiopia SPIA Ethiopia Reports (2020, 2024)

Household-level adoption rates 23.7% (2018) → 39.6% (2022)

Government is the **central player** fostering agricultural development

Both government and private sector suppliers

Rapid diffusion largely supply-driven.

Mozambique & Tanzania

Boucher et al. (2024)

Government not a central player

Farmers likely choose based on perceived benefits and costs.

Technology **bundling** (DT Maize + Index-based insurance)

Bundle: Drought-Tolerant Maize + Insurance

Mozambique & Tanzania

Boucher et al. (2024)

Figure 1: Geographic Diversification and Matched Triplet Randomisation

Base map and data are from OpenStreetMap and OpenStreetMap Foundation.

- Reduces yield loss from mid-season drought
- Removes longer-term effects of drought in future years: yields higher by 145 kg/ha.

DT Maize Seeds **and** Insurance

- Even larger reductions of long-term effects: yields higher **by 335 kg/ha**.
- Longer-term:
 - Farmers who saw the positive impact of technology in field **intensified** their use.
 - But those who did not experience shocks reverted to baseline.

Adaptation

Index-Based Livestock Insurance

Commercial insurance product to protect pastoralists against drought

Positive effects persist for adopters:

Reduces exposure to widespread risk events by 63% Although policyholders still face 69% of their initial risk (individual risk) Fewer small animals; more large animals Children's education increases

But: IBLI sales did not continue long term

Marketing & distribution constraints: Private insurance providers lack skilled agents

Adaptation

Climate-Smart Mapping and Adaptation Planning (CS-MAP)

Climate-Smart Mapping and Adaptation Planning Provincial agricultural plans Extension workers Anticipa

Farmers changing planting dates/crop choice

Participatory approach to develop & implement adaptation solutions

Anticipate climate risks

Recommend locallyappropriate adaptive behaviours

Risk of salinity (green, yellow, red)

Normal year

Extreme year

Climate-Smart Mapping and Adaptation Planning (CS-MAP)

Analysing agricultural plans: How do CS-MAPs influence the recommendations made to farmers?

Climate-Smart Mapping and Adaptation Planning (CS-MAP)

Changes recommended in CS-MAPS

Changes implemented by farmers

Climate-Smart Mapping and Adaptation Planning (CS-MAP)

Framework

Key Take-aways

Adoption at scale depends on both demand and supply-side factors.

Important to understand factors behind both scaling success and failure.

Case for empirical research on innovation dissemination & scale-up.

Thank you

www.linkedin.com/company /iaes-cgiar/

Independent Advisory and Evaluation Service