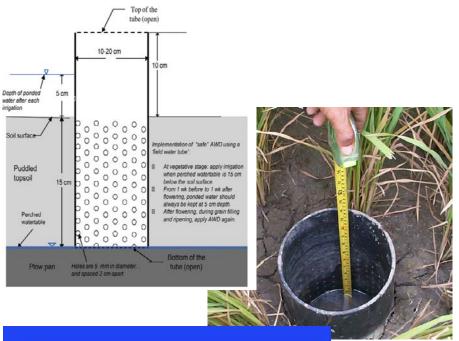

# Adoption and Impact of the Alternate Wetting and Drying (AWD) Water Management Technique for Irrigated Rice in the Philippines

Rod M. Rejesus (NC State/IRRI) SPIA Inception Workshop Washington, D.C


March 10, 2016

#### Introduction

- Increasing water scarcity in Asia
- 1kg of rice typically requires 3000-5000 liters of water
- Need more efficient water management technologies



#### **AWD Water Management**



| Regular | Flooding | Practices | AWD | A

- Instead of continuous flooding, rice fields are allowed to dry intermittently in AWD
- Field water tube is used to reveal perched water table
  - Irrigate to 5cm whenever water level in the observation well is below 15cm below soil surface (dry season)

#### Research Question

- To comprehensively and rigorously examine the multi-dimensional impact of AWD in the Philippines
  - Micro-level Economic Impact
  - Poverty Impact
  - Socio-cultural Impact
  - Environmental Impact
  - Rate-of-returns on research investments
    - Adoption levels

# Impact Pathway

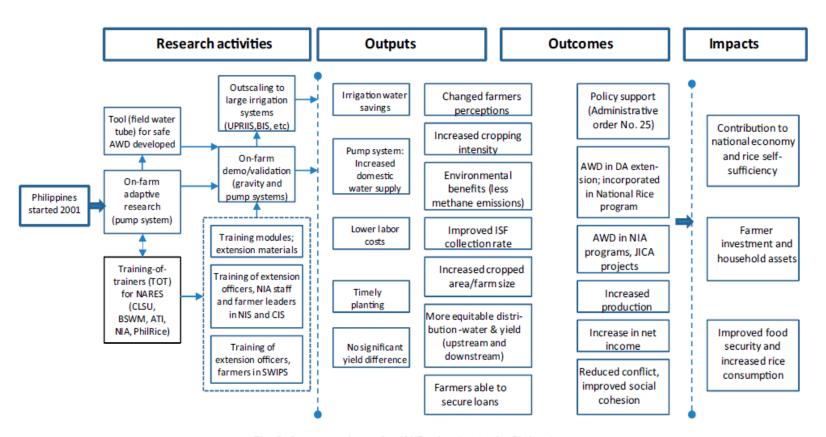
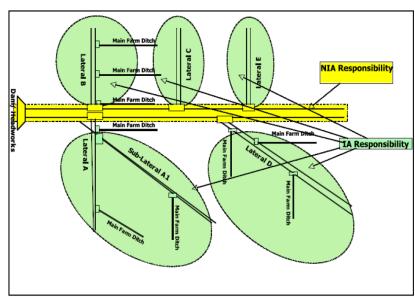
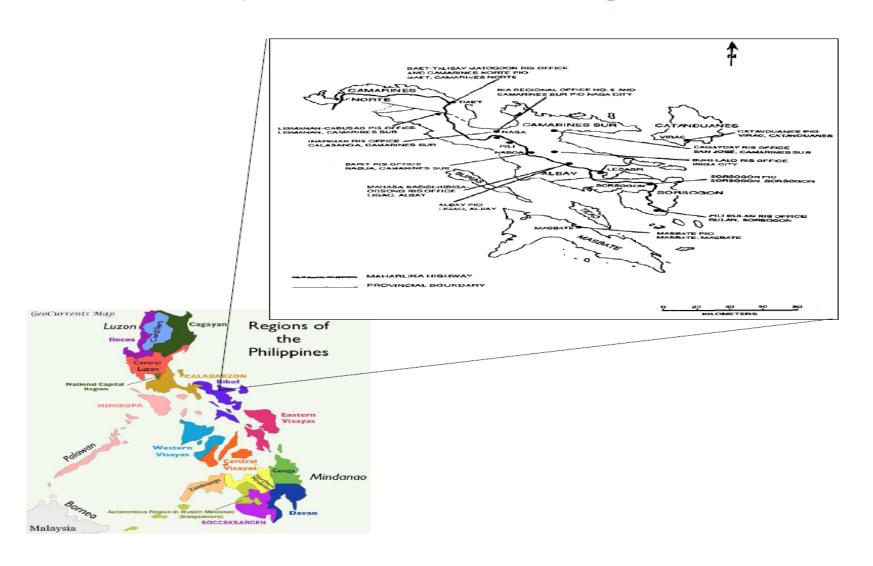


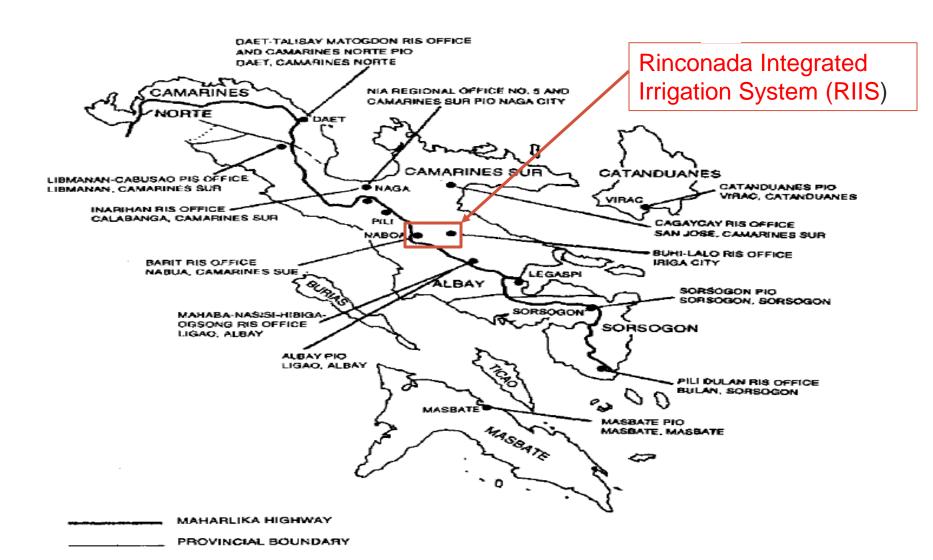

Fig. 3. Impact pathway for AWD adoption in the Philippines.

Source: Lampayan et al. (2015)

#### Irrigation and Institutional Context

- Focus on large gravitybased, national irrigation systems (NIS)
- NIS constructed and jointly operated by National Irrigation Association (NIA) and farmer Irrigator's Associations (IAs)
  - Sub-groups: Turnout Service Area Groups (TSAGs)



Figure 1. Pictorial representation of the typical responsibilities of IAs vs. NIA.



# Main Study Area: Bicol Region

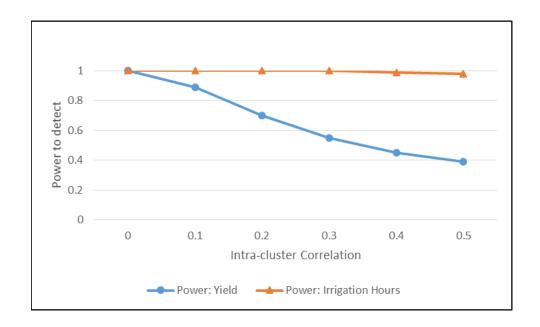


#### Main Study Area: Bicol



# Focus System: RIIS

- Rinconada Integrated Irrigation System (RIIS)
- Largest irrigation system in Bicol region


| No. of<br>IAs | No. of<br>TSAGs | Area<br>(ha) | No. of Farmers |  |  |  |  |  |
|---------------|-----------------|--------------|----------------|--|--|--|--|--|
|               |                 |              |                |  |  |  |  |  |
| 34            | 280             | 7,031        | 16,391         |  |  |  |  |  |
|               |                 |              |                |  |  |  |  |  |

As of Dec. 2013

- Randomized Control Trial (RCT) approach with baseline data collection prior to treatment
- Stratified "cluster" randomization approach at the TSAG level

| Nine Stratification "Groups" |                 |                 |  |  |  |  |  |  |  |  |  |  |
|------------------------------|-----------------|-----------------|--|--|--|--|--|--|--|--|--|--|
| Upstream IA,                 | Midstream IA,   | Downstream IA,  |  |  |  |  |  |  |  |  |  |  |
| Upstream TSAG                | Upstream TSAG   | Upstream TSAG   |  |  |  |  |  |  |  |  |  |  |
| Upstream IA,                 | Midstream IA,   | Downstream IA,  |  |  |  |  |  |  |  |  |  |  |
| Midstream TSAG               | Midstream TSAG  | Midstream TSAG  |  |  |  |  |  |  |  |  |  |  |
| Upstream IA,                 | Midstream IA,   | Downstream IA,  |  |  |  |  |  |  |  |  |  |  |
| Downstream TSAG              | Downstream TSAG | Downstream TSAG |  |  |  |  |  |  |  |  |  |  |

- Within each stratification "group", randomly select
   2 AWD treated TSAGs and 2 control TSAGs
  - Total of 36 TSAGs in the study (4 selected TSAGs x 9 stratification groups); 18 treated and 18 control TSAGs
- For each of the selected TSAG, randomly sample 20 farmers (total of 720 farmers, 360 treated and 360 control)
- Possible refinement:
  - Randomly select treatment and control TSAGs proportional to size (i.e., hectares or no. of farmers)?
- Data collection: Dry Season 2016 and 2017



Power calculations for detecting differences in yield and irrigation hours (under various intra-cluster correlation assumptions)

#### Micro-level Impact Indicators:

| Type of Impact:      | Method          | Impact Indicators/Measures                            |  |                                |  |  |  |
|----------------------|-----------------|-------------------------------------------------------|--|--------------------------------|--|--|--|
| Micro-Level Economic | RCT Approach    | Yield Impact (ton/ha or kg/ha)                        |  |                                |  |  |  |
| Impact               | with baseline   | Net farm Income Impact (Pesos/ha or \$/ha)            |  |                                |  |  |  |
|                      | data collection | Water use Impact                                      |  |                                |  |  |  |
|                      |                 | (irrigation hours or water volume in m <sup>3</sup> ) |  |                                |  |  |  |
|                      |                 |                                                       |  | Labor use Impact (man-days/ha) |  |  |  |
|                      |                 | Pesticide use impact (kg/ha)                          |  |                                |  |  |  |
|                      |                 | Fertilizer use impact (kg/ha)                         |  |                                |  |  |  |
|                      |                 | Area Farmed (ha)                                      |  |                                |  |  |  |

- Heterogeneity of Impacts
  - Upstream vs. Midstream vs. Downstream
  - Gender differentiated (by male or female head)

### Poverty Impact

- We proposed to use the Foster-Greer-Thorbecke (FGT) approach
- Impact Indicator:

| Type of Impact: | Method       | Impact Indicators/Measures                      |
|-----------------|--------------|-------------------------------------------------|
| Poverty Impact  | FGT approach | Difference in the FGT Poverty Index for the AWD |
|                 |              | treated group versus the control group          |

- Based on observed income differential from RCT
  - Simplistic, indirect price effects not considered
  - Consider looking at poverty maps over time?

### Socio-Cultural Impact

- Primarily qualitative:
  - KIIs and FGDs (i.e., from visits with NIA regional offices)
  - Network Analysis and Contribution Analysis
- Impact Indicators:

| Type of Impact:          | Method                   | Impact Indicators/Measures                                                                      |
|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------|
| Socio-Cultural<br>Impact | FGD & KII                | Reduction in no. of water-related conflicts (i.e., water grabbing incidents)                    |
|                          |                          | Perceptions of private sector on water availability (i.e, KII of hydroelectric plant personnel) |
|                          | Network Analysis         | Social network map (at IA and system level)                                                     |
|                          |                          | Prestige scores and centrality measures (i.e., degree centrality and Bonacich centrality)       |
|                          | Contribution<br>Analysis | Impact attribution based on a constructed theory change and evidence from observed outcomes     |

Issue: how relevant is network analysis in AWD?

### **Environmental Impact**

- Methane Reduction Analysis using Clean Development Mechanism (CDM) formulas (i.e., CH<sub>4</sub>, CO<sub>2</sub>e reduction)
  - Value tons of CO<sub>2</sub>e reduction (from carbon markets?)
- Watershed Scale Analysis to measure water savings at higher spatial scales
  - Utilize a remote sensing approach by Hafeez (2002)
- Impact Indicators:

| Method          | Impact Indicators/Measures                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------|
| CDM approach    | Methane emission effect (kgCH <sub>4</sub> /ha/season)                                           |
|                 | Equivalent Global Warming effect (tCO <sub>2</sub> e/year) and \$ value                          |
| Watershed Scale | Watershed scale water volume (m³)                                                                |
| Analysis        | Watershed scale water productivity measure (kg of crop yield per m <sup>3</sup> water delivered) |
| ,               | CDM approach Watershed Scale                                                                     |

#### AWD Adoption & Rate-of-Returns

- Adoption numbers based on data to be collected from visits of all NIA Regional Offices in the Philippines
  - Proposed to use Diagne and Demont (2007) approach
  - Synergy with remote sensing SPIA proposal to measure adoption
- Use Alston et al (1998) framework to estimate rate-of-returns on research investments

| Type of Impact:       | Method           | Impact Indicators/Measures                        |
|-----------------------|------------------|---------------------------------------------------|
| 5. Rate-of-returns on | Economic Surplus | Net Present Value (NPV in \$), benefit-cost-ratio |
| research investments  | Analysis         | (BCR), and Internal rate of return (IRR)          |

# Synergies with Parallel Studies

- Submitted SPIA proposal to track adoption of AWD through remote sensing approaches
- IRRI-AWD projects: Irrigated Rice Research Consortium (IRRC), Closing Rice Yield Gaps in Asia Project (CORIGAP)
- DA Philippines' Food Staple Self Sufficiency Program (FSSP)



#### Work Plan

| Main activities                                                                |   |   |   |   |   | 20 | 16 |   |   |   |   |   |   |   |   |   |   | 20 | 17 |   |   |   |   |   |
|--------------------------------------------------------------------------------|---|---|---|---|---|----|----|---|---|---|---|---|---|---|---|---|---|----|----|---|---|---|---|---|
|                                                                                | J | F | М | Α | М | J  | J  | Α | S | 0 | N | D | J | F | М | Α | М | J  | J  | Α | S | 0 | N | D |
| Preparation of survey<br>instruments and initial<br>Bicol region visits        |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| Randomization,<br>baseline data<br>collection, and<br>encoding                 |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| NIA region visits and adoption estimation                                      |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| AWD training in in treatment TSAGs                                             |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| Implementation of<br>AWD in treatment<br>TSAGs                                 |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| CDM emission study<br>and watershed-scale<br>analysis                          |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| After-treatment follow-<br>up data collection and<br>encoding                  |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| FGDs/KIIs, network<br>analysis and<br>contribution analysis                    |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| Micro-level economic<br>impact, poverty impact<br>& rate-of-return<br>analysis |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |
| Report/article writing                                                         |   |   |   |   |   |    |    |   |   |   |   |   |   |   |   |   |   |    |    |   |   |   |   |   |

#### **Project Team**

- Rod M. Rejesus (NC State/IRRI)
- Sam Mohanty (IRRI)
- Grant Singleton (IRRI/IRRC/CORIGAP)
- Jose M. Yorobe Jr. (UPLB/IRRI)
- Ruben Lampayan (IRRI)
- Ole Sander (IRRI)
- Evangeline Sibayan (PhilRice)
- Vic Vicmundo (NIA Bicol)
- Rose San Valentin (IRRI)





#### Issues and Challenges

- Randomly select proportional to size or not?
- Power of RCT for yield increase no. of TSAGs?
- Gender differentiated impacts acceptable?
- Alternatives to FGT approach to poverty impact?
- Is network analysis relevant?
- Do we need rate-of-returns on research?
- Too many proposed analysis, too little time?
   Scale-back?

#### **THANK YOU!**

 Other questions, comments, suggestions or further discussion?

