Genotyping maize varieties in Uganda James Stevenson, representing team: Talip Kilic, John Ilukor, Sydney Gourlay, Andrzej Killian, Julius Sserumaga

Independent Science and Partnership Council

MAPS Sample – EAs

75 EAs total

3 Strata in Eastern Uganda:

- Serere District (15 EAs)
- Sironko District (15 EAs)
- Portion of Iganga and Mayuge districts for which remote sensing imagery will be collected (45 EAs, shown at right)

Sampling

Independent Science and Partnership Council

orld Bank – World Agroforestry Centre – FAO SPLA

OBJECTIVES

Table of Contents

INTRODUCTION ...

HE REAL AND	
SAMPLE OVERVIEW	4
HOUSEHOLD SELECTION	4
Fieldwork Organization & TimeLine	
ORGANIZATIONAL STRUCTURE	
SUPERVISION	
ENUMERATOR DUTIES & GUIDELINES	
TEAM LEADER DUTIES	
PILES AND FORMS	
EQUIPMENT UST	
USING CAPI	
CONCEPTS AND WAIN DEFINITIONS	
QUISTION LIPPES	
WHEN PROBLEMS ARDE	
POST-PLANTING QUESTIONNAIRE	
MODULE A: PP COVER	
MODULE B: HOUSEHOLD ROSTER	
MODULE B.2: DWELLING.	
Module C: Consumer Durables	
MODULE D: FARMING ASSETS	
Module I: Extension Services	
MODULE E: PARCEL ROSTER.	
MODULE F: PLOT ROSTER	
MODULE G: PLOT DETAILS	
MODULE H: CROP DETAILS	
MODULE K: AREA & CROP-CUT	
MODULE L: SOIL	
CROP-CUTTING QUESTIONNAIRE	
MODULE R: MAIZE VARIETY DETAILS	
MODULE M: CROP-CUT FORM	
ANNEX I: GPS COORDINATES.	
ANNEX 2: GPS AREA MEASUREMENT	
ANNEX 3. CROP-CUTTING	
ANNEX 4. LEAF SAMPLING	
ANNEX 5. SOIL SAMPLING	
ANNEX 6: SAMPLES OF BIRTH CERTIFICATES	
ANNEX 7: AGE COMPUTATION CHART	

Leaf sampling kits are

fieldwork settings

difficult to use in survey

Independent Science and Council

ENUMERATOR MANUAL Post-Planting - Crop-Cutting April 2015

Recursive Partitioning & Classification Tree Analysis of Morphological Attributes of 38 Reference Library Samples

- Morphological attributes for the reference library: Obtained by planting out the 38 varieties in NaCCRI fields.
- Results: Varieties are uniquely identified using 11 attributes.
- Identification of the varieties in the field: Using these attributes, varieties that the farmers plant were identified based farmer responses on morphological attributes

How Do Different Methods Perform in Unique Identification of Maize Varieties?

- 55 percent of farmers could not state the variety they have planted
- Farmer-reported morph. attributes does not uniquely identify varieties
- DNA fingerprinting performs the best for **unique** varietal identification

	Farmer Elicitation (FE)		Strict Morph. Protocol (SP)		DNA Fingerprinting	
	Freq.	%	Freq.	%	Freq.	%
Don't Know	283	55	448	88	0	0
Uniquely identified	227	45	62	12	510	100
TOTAL	510	100	510	100	510	100
Number of Varieties	13		16		12	

Results

2% of sample of 510 farmers able to correctly identify variety name

Mean reference library heterogeneity level is 33% genetic lines not been well maintained?

Purity (% of major genotype representing constituent of genetic material present in plot) is average of only 63%

Phenotypic protocol doesn't work

GENOTYPE (Method E)

Farmer elicited variety name (Method A)

Independent Science and Partnership Council

(Unacceptable Levels of) Heterogeneity in Reference Library Samples

• Acceptable level of heterogeneity of the samples is 15% (0.15) but our results show that most of the hybrids are above the threshold.

Mean	32.9%
Median	24.6%
Min	9.8%
Max	75.2%

