Comparing methods to estimate adoption rates: The case of beans in Zambia

Mywish Maredia (Michigan State University)

Byron Reyes, Enid Katungi, Clare Mukankusi, Bodo Raatz and Allan Male (International Center for Tropical Agriculture)

Petan Hamazakaza and Kennedy Mui Mui (Zambia Agricultural Research Institute)

Motivation & Objectives of study

- Varietal adoption of HH surveys mostly rely on farmers' response to varietal identification (name and type)
- Shortcoming is that biased results may occur if identification is not accurate/possible or additional steps may be needed
- Main implication: estimates of impact may be misleading
- This motivated us to implement this study, under the SIAC project
- Objectives were:
 - To test different approaches of collecting variety-specific adoption data, validating them against DNA fingerprinting
 - Determine methods that are more accurate to estimate adoption rates
 - Draw implications on assessing determinants of technology adoption and impact under these methods

Methodology

- Geographic scope: Muchinga and Northern Provinces, Zambia (70% of bean production); 67 villages, 402 farmers
- Piggy back on already planned varietal adoption and impact study by ZARI (supported by PABRA & CIAT)
- Methods tested:

Method	Detail
T	DNA Fingerprinting () as benchmark
Α	Farmer elicitation of name (A1) and type (A2) of variety
В	Farmer response on type of variety planted that match seed samples shown by enumerators
С	Taking photos of seeds harvested for later identification by experts
D	Collecting sample of harvested seeds for later identification by experts

Lessons learned and considerations for scaling up

- Results show that estimates of adoption greatly vary depending on the method used
- Though some methods provided overall estimates of adoption close to the "truth", all presented Type I (local variety classified as improved) and Type II (improved variety classified as local) error
- One needs to consider the logistics of implementing the methods (e.g., when is best time to collect information/samples)
- Labeling is key: the more stages when samples are moved, the higher the risk of mixing up labels
- Proper storage of samples is important... some samples were affected by storage pests

Lessons learned and considerations for scaling up (2)

- Farmers mix varieties post-harvest, which is an issue for DNA analysis
- Some methods require additional costs (and logistics) to data collection (p.e., experts)
- Reference library could be extended by adding samples of local varieties (but this is challenging)
- Local capacity needs to be developed for proper DNA fingerprinting