DNA fingerprinting for estimating varietal adoption

Introduction and overview

Overview of studies

Author	Labarta et al	Hareau et al	Maredia et al	Maredia et al	Maredia et al	Stevenson et al
Crop	Cassava	Potato	Cassava	Lentil	Wheat	Maize
Multiplication	Clonal	Clonal	Clonal	Self-pollinated, with cross-pollination vectored by insects	Self-pollinated (>95%)	Cross-pollinated
Area (ha)	500k + 30k					
Region	Vietnam & Colombia	Yunnan, China	Ghana	Bihar, India	Bihar, India	Uganda
Sample #	3500 + 434	141 out of 615 HH	917 from 495 plots	880	3,162	416
Markers	SNP	SSR	GBS >> 56,849 SNPs	GBS	GBS	
Cost	US\$ 15-20	US\$ 50-70 >> US\$ 10-20	US\$ 30	US\$ 50	US\$ 50	
Conclusion	Clear identification as vegetatively propagated crop	Why genotyping if visual identification is 97% accurate	11 varietal cluster	No results yet	No results yet	All samples lost
Objective	Confirming adoption	Confirming adoption	Identification	Identification	Identification	Identification
Author	Stevenson et al	Yamano et al	Veettil et al	Aw-Hassan	Maredia et al	Kosmowski et a
Crop	Maize	Rice	Rice	Lentil	Beans	Sweet potato
Multiplication	Cross-pollinated	Self-pollinated	Self-pollinated	Self-pollinated, with cross-pollination vectored by insects	Partially cross- pollination (10-50%)	Clonal
Area (ha)						
Region	Uganda	Bangladesh	India	Bangladesh	Zambia	Ethiopia
Sample #	550	1,289	2,79	7 Samples from dealers	402	259
Markers	140 SNPs; 10,000 DArT	6k SNP chip	6k SNP chip	ISSR & SSR	66 SNP markers	DArT
Cost					US\$ 34	
Conclusion	Different resolution between different	Distinct allele (Sub1) is easy to recognize, a	library; What is same	8 out of 9 samples matched with	4-71% of datapoints (or samples) were	identification; large
	number of samples	variety not; what is same what is different	what is different	reference samples	identified as IVs	reference library
Objective	Identification	Varieties with a particular trait	Identification	Identification	Identification	Identification

Overview of studies

Propagation

- Clonal: cassava, potato, sweet potato
- Self-pollinated (>98%): wheat, rice, barley, chick peas, pea, groundnuts
- Partially cross-pollinated (5 50%): sorghum, lentils, beans, pigeon peas, faba beans, cowpeas
- Cross-pollinated: maize, pearl millet
- Sample size: 141 to 3,500 farmers/dealers; random/clustered in village/clustered in field.
- Molecular markers: 60 to 56,849; type of markers.
- Methodological challenges: seed versus leaf samples, degeneration, type of markers, availability of reference samples
- Purpose: use of trait or improved varieties, variety identification

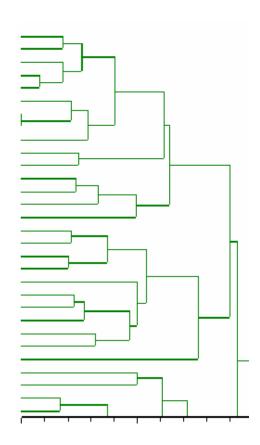
Overview of studies

- Propagation
 - Clonal: cassava, potato, sweet potato
 - Self-pollinated (>98%): wheat, rice, barley, chick peas, pea, pea
 - Partially cross-pollinated (5 50%): sorghum, lentils, by Sigeon peas (6) leans, cowpeas
 - Cross-pollinated: maize, pearl millet
- Sample size: 141 to 3,500 Yarmers/de Nrs; random/clustered in village/clustered in Village/
- Molecular marks to 56,849; type of markers.
- **Methodological challenges**: seed *versus* leaf samples, degeneration, type of markers, availability of reference samples
- Purpose: use of trait or improved varieties, variety identification

"Same study" – different questions

- "Adoption" or "use"?
- How many farmers use
 - Improved varieties?
 - CGIAR/NARS/private sector varieties?
 - Project varieties?
 - A trait?
- How many plants in a field are the actual variety?

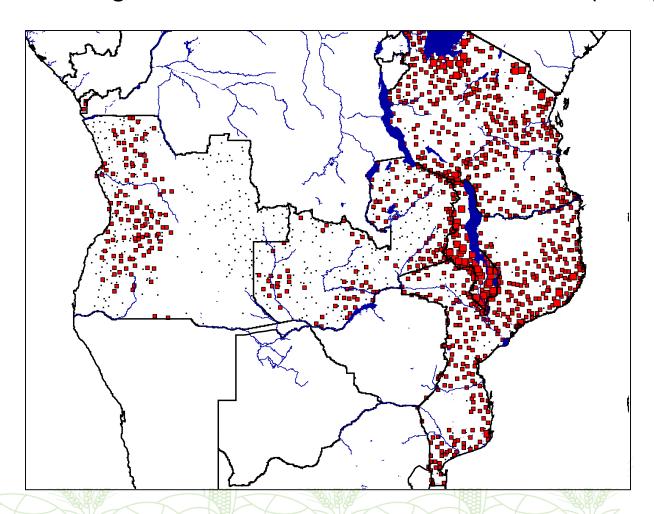
 What are relevant questions and why? Why and when are we asking it? Is the methodology appropriate?


"Same study" – different questions

- "Adoption" or "use"?
- How many farmers use
 - Improved varieties? Reference varieties
 - CGIAR/NARS/private sector varieties? Reference varieties
 - Project varieties? after what time frame and seed distribution?
 - A trait? e.g. Sub1 (easier because monogenic) drought tolerance (very difficult because polygenic)
- How many plants in a field are the actual variety?
 - This is not about establishing adoption or conscious use; this is about establishing seed purity and outcrossing. Sampling within field variation <> more fields.
- What are relevant questions and why? Why and when are we asking it? Is the methodology appropriate?

Need to further define the methodology

- Sample size 141 to 3,500 out of ??? fields in a district, province, country
 - Predict the confidence interval to set the sampling frequency.
- Molecular markers: 60 to 56,849
 - Optimize the confidence interval of the conclusion <> costs.
- What to we declare to be the same/different?
 - Easier for: clonal, self-pollinated crops, mono-genic traits (e.g Sub1)
 - Difficult for (partially) cross pollinated crops (100%? 90%? 50%?)
 and polygenic traits (visual, molecular)
 - When does "similar" imply "descending from" or "benefit"?
- Random sampling
 - Seed distribution/sale is not random.



Seed distribution is not uniform

Predicting maize seed distribution in southern Africa (2004)

Consider impact pathway

Reference variety (-ies) or trait

Formal dissemination: geography & volume over time

Informal dissemination by using grain as seed, or vegetative propagation:
 volume over time

- (Mostly unintentional) changes: mixtures, cross pollination, selection, hybrid segregation
 - Clonal/self-pollinated/large field sizes/formal sector >> slower changes
 - Cross-pollinated/small field sizes/informal sector >> more rapid changes

 Change of seed and/or variety: undesirable variety or degenerated variety or loss of seed

Excellence in Breeding Platform (former Genetic Gains Platform)

"Breeders need to work with socio-economists on questions of impact assessment"

- What are relevant/most important questions to ask and why?
- Appropriate methodology = f (purpose, propagation, impact pathway, confidence interval)
- Appropriate conclusion that stay within the original hypothesis & confidence intervals
- Lots of differently framed use/impact studies are academically interesting but are they of value? >> Aligned studies become more powerful
- Agreeing on the caveats (genetics/socioeconomics) >> Best practices for use/impact studies

