

DNA Fingerprinting and Bioinformatics

Davis Gimode Bioinformatics Research Specialist, SPIA Country Studies

Webinar #4, 28th February 2025

Definitions

Central dogma of molecular biology

Genetic information flows typically in one direction, from DNA, to RNA, to protein -Francis Crick

* Fingerprinting: Distinguishing between individuals by the unique characteristics of their genotype

DNA Fingerprinting for adoption tracking

- Traditionally adoption tracking relies on farmers' self-reporting in household surveys
- Increasingly evident that farmer self-reporting may be unreliable
 - Inability of farmers to correctly identify varieties used
 - Inconsistency between farmer names and official records
 - Loss of genetic identity

- Floro IV et al., 2018; Wineman et al., 2020

Hence the necessity of using DNA fingerprinting to accurately identify varieties in adoption tracking studies

* Fingerprinting: Distinguishing between individuals by the unique characteristics of their genotype

***** Fingerprinting: Distinguishing between individuals by the unique characteristics of their genotype

DNA Fingerprinting for adoption tracking

- Incorporation of DNA fingerprinting to improve accuracy is becoming mainstream
- Motivated by drastic decrease in cost of generating genome scale data
- Evidenced by increasing numbers of adoption tracking literature that include DNA fingerprinting

DNA sequencing cost

What it entails

There are four main steps of DNA fingerprinting for adoption tracking

- Compiling a reference library
- Collecting samples from the field
- Genotyping samples and references
- * Analysis: Assigning variety lds to samples

Fingerprinting: Distinguishing between individuals by the unique characteristics of their genotype

Reference library compilation What is a variety?

Reference library compilation What is a variety?

Old variety

Add disease resistance

Reference library compilation

Important considerations

- This is the most important step since samples can not be identified without a good reference library
- The reference library should be:
 - Complete
 - The level of completeness is determined by the purpose of the study
 - Distinct
 - Individual varieties should be sufficiently differentiated from each other

Pure

 Varieties should not be contaminated through outcrossing or mixing with other varieties

Improved variety

Reference library compilation Obtaining reference material

- The best source for reference material is breeder seed
- This is the stock of genetically pure material that is maintained by a single institutional owner within a country
- Breeder seed and information on varieties can be obtained from:
 - International Agricultural Research Centers (IARCs)
 - National Agricultural Research Centers (NARCs)
 - Variety release committees
 - Seed multiplication agencies
 - Farmer's seed cooperatives
 - Private companies

CGIAR Standing Panel on Impact Assessment

Improved variety

Sample collection

- Sample collection happens in the course of the Household survey
- Enumerators should be trained on the process before hand
- Enumerators should be familiar with field sampling manual

Some of the things to prepare in advance

Device with barcode reader

Leaf punch

Alcohol wipes

Some key considerations

- Two main factors inform the nature of samples to be collected
 - Reproductive strategy of the crop
 - Expectation of homogeneity vs heterogeneity in the fields

Clonals

Cassava

Groundnut

Maize

Sweet potato

- The clonals, Cassava and Sweet potato are outcrossing while potato is inbred
- However, they are cultivated asexually hence

Sample collection Sample plating

- Sampling process is completed after samples are transferred to 96 well plates
- Liaise with a lab that can help with the process
- Use the coordinate app to guide in plating and to generate a sample tracking file

_					-	•
1	Value	Column	Row	Identification	Person	Date
2	Sample_1	1	Α	B_Os_1	Davis	6/9/2024
3	Sample_2	1	в	B_Os_1	Davis	6/9/2024
4	Sample_3	1	C	B_Os_1	Davis	6/9/2024
5	Sample_4	1	D	B_Os_1	Davis	6/9/2024
6	Sample_5	1	E	B_Os_1	Davis	6/9/2024
7	Sample_6	1	F	B_Os_1	Davis	6/9/2024
8	Sample_7	1	G	B_Os_1	Davis	6/9/2024
9	Sample_8	1	н	B_Os_1	Davis	6/9/2024
10	Sample_9	2	Α	B_Os_1	Davis	6/9/2024
11	Sample_10	2	в	B_Os_1	Davis	6/9/2024
12	Sample_11	2	C	B_Os_1	Davis	6/9/2024
13	Sample_12	2	D	B_Os_1	Davis	6/9/2024
14	Sample_13	2	E	B_Os_1	Davis	6/9/2024
15	Sample_14	2	F	B_Os_1	Davis	6/9/2024
16	Sample_15	2	G	B_Os_1	Davis	6/9/2024
17	Sample_16	2	н	B_Os_1	Davis	6/9/2024

Sample tracking file

Standing

Genotyping

It is best to bundle DNA extraction with genotyping

*****GSP instructions on plastic ware and shipping should be strictly adhered to

Genotyping Choosing a GSP

Choice of GSP depends on Nature of samples		Specific	Varietal purity	
* Durposo of study		Identification		
· Pulpose of study	Single leaf	≻MDP	≻LDP	
Examples of GSPs		≻DArT	≻Intertek	
🗑 DArT		≻Agriplex		
Seriplex				
Intertek	Bulk	► MDP, GBS, DArTseq	≻LDP, MDP	
Psomagen		≻DArT	≻Intertek	
🗑 CIAT etc			► DATI	

- ***** The GSP will deliver genotyping data
 - * In some cases eg DArT & CIAT, preliminary analysis can be provided

Genotype data analysis SNPs – Basis of fingerprinting

Local variety

Genotyped region AATGCCTCGTACTCGCTCGTCC

Improved variety

Genotyped region AATGCCTCGTAATCGCTCGTCC

Genetic region of interest AATGCCTCGTAATCGCTCGTCC (Improved variety) Genetic region of interest AATGCCTCGTACTCGTCC (Local variety)

Single Nucleotide Polymorphism (SNP)

Genotype data analysis SNP data formats Image: Sequencing Sequencing Pre-processing Data delivery

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
SNP_001	GG	GG	GG	GG	GC	AA
SNP_002	СС	СС	СС	СС	CG	GG
SNP_003	TT	ТΤ	TT	Π	TA	CC
SNP_004	CC	CC	CC	СС	CG	AT

Most platforms: Score data, allelic

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
SNP 001	163	191	243	246	235
SNP 001	104	10	81	0	8
SNP 002	45	16	60	24	63
SNP 002	8	13	9	30	0
5NP 003	89	39	124	42	60
5NP 003	177	126	70	99	123
SNP 004	10	5	30	4	16
SNP 004	59	40	31	64	60

DArT output: Count data

Convert

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
SNP_001	1	1	1	1	1	(
SNP_002	1	1	1	0	1	
SNP_003	0	C	0	0	0	(
SNP_004	0	0	1	0	0	(

Score data, numeric

Analysis pipelines Simple comparison

Simple visual comparison

can work with

Few SNPs eg LDP

• One or few references

	Reference	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
SNP_001	GG	GG	GG	GG	GG	GC	AA
SNP_002	CC	СС	CC	CC	CC	CG	GG
SNP_003	TT	Π	TT	П	Π	TA	СС
SNP_004	СС	СС	СС	СС	CC	CG	AT

Analysis pipelines Distance methods

- Works by checking the similarity between the samples and references at each locus
- Examples of algorithms:
 - Identity by State (IBS)
 - Hamming
 - Nei's

Typical Threshold of 5%genetic distance used todetermine assignment

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Sample 1	0	0.002053	0.372163	0.37119	0.071311
Sample 2	0.002053	0	0.370782	0.370571	0.071575
Sample 3	0.372163	0.370782	0	0.00085	0.365269
Sample 4	0.37119	0.370571	0.00085	0	0.36394
Sample 5	0.071311	0.071575	0.365269	0.36394	0
Sample 6	0.071782	0.071987	0.365426	0.363788	0.001641

Results in a n x n matrix showing relationships between all samples and all references

Analysis pipelines Allele frequency methods

- Data from DArT used
 Compares allele
 proportions or frequencies
 between field samples and
 references to assign best
 matches
- Examples
 - 😻 Purity DArT
 - 😻 DAP DArT
 - Cluster IMAGE

Example of score distributions following analysis by DAP algorithm

Conclusion

DNA fingerprinting is a useful tool for varietal identification
 There are many steps involved and numerous considerations
 that need to be carefully evaluated

We recommend starting the process as early as possible

Particularly reference library compilation

- We are available to offer guidance on
 - Conceptualization
 - Implementation
 - Identifying and negotiating with GSPs
 - Recommending analysis pipelines etc

Next steps

Create a fingerprinting community of practice - Asana

- Team leads
- Point persons
- Fill the questionnaire

We can have more detailed discussions on specific activities

- * Reference library compilation
- Sampling

Variety identification

We'll avail a preliminary draft of a DNA fingerprinting guidance manual shortly