The Green Revolution and Infant Mortality

Evidence from 600,000 Births

Prabhat Barnwal¹, Aaditya Dar², Jan von der Goltz³, Ram Fishman⁴, Gordon McCord⁵ and Nathan Mueller⁶ July 30, 2016

¹Michigan State University, ²George Washington University, ³World Bank, ⁴Tel Aviv University, ⁵University of California, San Diego and ⁶Harvard University

Outline

Motivation

Data

Outcomes

Crop area

Improved Varieties

Empirical Strategy

Findings

Impact of MVs

DIIVA (MV Releases)

GAEZ

Country Case Study

Motivation

Motivation

- The Green Revolution is arguably one of the most significant economic transformations of the 20th century
 - More than 8,000 modern varieties (MVs) released over the past 40 years and sown over much of the global cultivated area (World Bank, 2008)
- Thought to have led to major improvements in productivity, income, food security and health in developing countries (Evenson and Gollin, 2003; Bustos et al., 2016; McArthur and McCord, 2016)
- In recent years, renewed debate on:
 - The role of agriculture in development
 - The impact of agricultural productivity gains on food security, nutrition and health
 - The efficient levels of public investment in agricultural R&D and technology diffusion

Infant Mortality and MV Adoption, by region

- Estimating the causal impact of the GR is challenging:
 - Large scale, gradual transformation
 - Severe data limitations
 - (Development and) Adoption of MVs is endogenous, creating potentially spurious correlations with economic or health outcomes.
 - Large potential spillover effects.

- Most evidence limited to:
 - Mostly country level correlations (including panels) of MV adoption and agricultural productivity (Evenson and Gollin, 2003; Walker and Alwang, 2015)
 - Relatively small number of experimental or quasi-experimental localised studies of impacts on food security (Stewart et al, 2015)
- Country level relationships could be biased by various policy and economic confounders.
- At the country level, no evidence for negative relationship between infant mortality and MV diffusion.

- Attempts to improve quality of global scale inference of the health impacts of MV adoption
- Examines correlations at sub-national, fine spatial and temporal scales, controlling for all country level processes
 - Constructs time-varying and spatially explicit, sub-national indicators of MV coverage
 - Uses DHS data to construct a panel of child births and mortality at the village level
 - Constructed sample contains approx. 18,000 rural villages spread across spread across 400 administrative regions in 36 countries

Data

Infant Mortality (from Demographic and Health Surveys)

 Reconstructed village-birth year child level panel containing >600,000 rural births from 1950 to 2012

Figure 1: Location of DHS sampling clusters in rural areas

Ray et al. (2012) provide cultivated areas of 4 cereals (Maize, Rice, Wheat and Soybeans) from 1961 to 2008

Figure 2: Average maize area, 1961-65 (as fraction of grid cell)

• Resolution: 5 arc minute (10 imes 10 km at the equator)

Monfreda et al. (2008) provide cultivated areas for 175 Crops circa 2000

Figure 3: Harvested areas for 4 crops in 2000 (as % of total area)

Area under Improved Varieties

- Evenson and Gollin (2003) provide country \times year \times crop data on the fraction of area planted with modern varieties.
- 11 major crops, 90 countries, 1960 to 2000

Figure 4: Area weighted MV adoption for 3 crops, 1960-2000 (in %)

Figure 5: Area weighted MV adoption for 11 crops, 1970-2000 (in %)

N= 86; mean= .17 ; sd= .19

A Country Example

Figure 6: Crop wise MV adoption in Nigeria, 1960-2000 (in %)

Empirical Strategy

Constructing the 'treatment' variable (Nigeria as an example)

For village v in country c at time t, define:

$$MV \times 1961-65area_{vct} = \frac{\sum_{j}^{3} (CropAreain1961-65_{jvct} \times MVArea_{jct})}{\sum_{j}^{3} CropArea_{jvct}}$$
(1)

 $j \in \{Maize, Rice, Wheat\}.$

Figure 7: Percentage point change in (MV \times 1961-65 Area) over time

For village v in country c at time t, define:

$$MV \times 2000 area_{vct} = rac{\sum_{j}^{11} (CropAreain2000_{jvc} \times MVArea_{jct})}{\sum_{j}^{11} CropArea_{jvc}}$$
 (2)

 $j \in \{Barley, Bean, Cassava, Groundnut, Lentil, Maize, Millet, Potato, Rice, Sorghum, Wheat\}$

Figure 8: Percentage point change in (MV \times 2000 Area) over time

$$y_{ivct} = \gamma (MV \times Area)_{vct} + u_v + Z_{ct} + X_{ivct} + e_{ivct}$$
(3)

where, y_{ivct} is a binary indicator of infant mortality (death in the first year of life) i.e. whether child *i* in village *v* in country *c* died in its birth year *t*

- u_v are village fixed effects and Z_{ct} are country-year FE
- X_{ivct} includes quadratic in mother's age (at birth of child) and sex of child
- *e*_{ivct} clustered at subnational (admin) level
- Sample restricted to rural villages and mothers who report to have never migrated

- Examines whether parts of the country where MVs were faster adopted display faster than average reductions in infant mortality
- Controlling for flexible country \times birth year FE absorbs all economic and policy changes at the country level
- Only identifies effects occurring due to:
 - Income increases for farmers
 - Localised increases in food availability resulting from limited market connectivity

- **Concern**: Could we be conflating the effect of MV with effects related to use of specific crops operating through non-MV channels?
- "Solution": Controlling for Crop Areas × Year × Region does not alter the results.
- **Concern**: Does not fully address potential local endogeneity of MV adoption.
- "Solution":Controlling for geography (distance to coast and cities) × flexible time trends does not alter the results.
- Currently examining "balance" pre-MV diffusion....

Findings

	(1)	(2)	(3)
Panel A: All			
$MV\times2000$ area	-0.0633		
	(0.0266)**		
$\rm MV\times1961\text{-}65$ area		-0.0542	-0.0553
		(0.0165)***	(0.0172)***
Ν	580,805	567,941	518,179
Panel B: Girls			
$MV\times2000$ area	-0.0212		
	(0.0365)		
$\rm MV\times1961\text{-}65$ area		-0.0238	-0.0291
		(0.0228)	(0.0248)
Ν	282,395	276,160	251,790
Panel C: Boys			
$MV\times2000$ area	-0.0939		
	(0.0309)***		
$\rm MV\times1961\text{-}65$ area		-0.0859	-0.0797
		(0.0185)***	(0.0175)***
N	297,083	290,475	265,271
Geog controls	No	No	Yes

Table 1: Impact on infant mortality

Note: Geographic controls include distance to coast \times region \times year FE and distance to cities \times region \times year FE. The mean for overall infant mortality is 0.1, for girls it is 0.098 and for boys it is 0.11.

	(1)	(2)	(3)	(4)
	LAC	MENA	SSA	SSEA
All	-0.1493	-0.2367	-0.0280	0.1360
	(0.0643)**	(0.0663)***	(0.0125)**	(0.1173)
Ν	76,224	119,047	316,728	55,942
Girls	-0.1074	-0.1953	0.0023	-0.0386
	(0.0764)	(0.0891)**	(0.0209)	(0.1618)
Ν	37,044	57,469	154,458	27,189
Boys	-0.2156	-0.2873	-0.0571	0.2084
	(0.0884)**	(0.0621)***	(0.0141)***	(0.1757)
Ν	38,770	61,520	161,675	28,510

Table 2: Impact of MV (Crop area in 1961-65 \times MV) on infant mortality, by region

Note: LAC includes 5 countries, North Africa 2 countries, SSA 25 countries and SSEA 4 countries.

	(1) Cereals	(2) Maize	(3) Millet	(4) Rice	(5) Sorghum	(6) Wheat
All	-0.0489 (0.0192)**	-0.0022 (0.1069)	-0.2351 (0.3957)	0.1305 (0.0614)**	-0.4075 (0.0697)***	-0.0792 (0.0477)*
Ν	580,495	629,664	629,664	629,664	629,664	629,664
Girls	-0.0111 (0.0255)	-0.0965 (0.1358)	-0.4989 (0.6119)	0.2233 (0.0726)***	-0.3128 (0.0835)***	-0.0783 (0.0492)
Ν	282,258	306,377	306,377	306,377	306,377	306,377
Boys	-0.0802 (0.0227)***	0.1771 (0.1409)	0.0627 (0.7163)	0.0936 (0.0805)	-0.5116 (0.0676)***	-0.0895 (0.0561)
N	296,923	321,823	321,823	321,823	321,823	321,823

Table 3: Impact of (respective) crop area in 2000 × MV on infant mortality

	(1)	(2)	(3)	(4)	(5)	(6)
	Cereals	Maize	Millet	Rice	Sorghum	Wheat
All	-0.0489	-0.0159	-0.172	0.0747	-0.426	0.0373
	(0.0192)**	(0.112)	(0.397)	(0.0557)	(0.0729)***	(0.0663)
N	580,495	629,664	629,664	629,664	629,664	629,664
Girls	-0.0111	-0.134	-0.467	0.196	-0.262	-0.00977
	(0.0255)	(0.143)	(0.616)	(0.0734)***	(0.0859)***	(0.0623)
Ν	282,258	306,377	306,377	306,377	306,377	306,377
Boys	-0.0802	0.177	0.156	0.00245	-0.579	0.0725
	(0.0227)***	* (0.143)	(0.713)	(0.0764)	(0.113)***	(0.0888)
N	296,923	321,823	321,823	321,823	321,823	321,823

Table 4: Impact of crop area in 2000 × MV on infant mortality

- We use rich subnational data to study the differential impact of MVs on infant mortality of boys and girls in 36 developing countries
- Preliminary results suggests that a 25 percentage point expansion of area planted to MVs is associated with a decline of 1.2-1.5 percentage points in infant mortality
- Robust to weighted average of cereal (5 crop) areas in 2000 \times MV
- Robust to several tests, and across regions (except Asia)

• Next steps:

- Mother fixed effects
- Improve inference by using data on timing of releases (DIIVA) for "less endogenous" temporal variation
- Improve inference by using agro-ecological (GAEZ) suitability for exogenous spatial variation in crop choice
- Improve inference by using agro-ecological (GAEZ) suitability for exogenous spatial variation in MV
- Country case study

- Diffusion and Impacts of Improved Varieties in Africa (DIIVA) focusses on Sub-Saharan Africa and provides following estimates:
 - National adoption percentage in 2009
 - Used to extend sample
 - Result: results disappear
 - Aggregate number of releases by crop-country-year
 - Use variation in releases to replace MV diffusion data from EG
 - Results disappear when using cumulative releases
 - Note: mixed correlations between these release variables and MV diffusion at country level

	(1)	(2)	(3)
Panel A: All			
$MV\times2000$ area	0.0278		
	(0.0254)		
$\rm MV\times1961\text{-}65$ area		0.0031	0.0088
		(0.0153)	(0.0207)
Ν	381,504	368,291	330,813
Panel B: Girls			
$MV\times2000$ area	0.0468		
	(0.0295)		
$\rm MV\times1961\text{-}65$ area		0.0081	0.0201
		(0.0184)	(0.0253)
Ν	186,410	180,006	161,571
Panel C: Boys			
$\rm MV$ \times 2000 area	0.0156		
	(0.0333)		
$\rm MV\times1961\text{-}65$ area		-0.0043	-0.0034
		(0, 0, 0, 0, 0)	$(0,004\Gamma)$
		(0.0209)	(0.0245)
N	194,647	187,843	168,875

Table 5: Impact on infant mortality in SSA, 1961-2008 (extension using DIIVA)

Note: Geographic controls include distance to coast \times region \times year FE and distance to cities \times region \times year FE.

For village v in country c at time t, define the following measures:

$$Releases \times 1961-65area_{vct} = \frac{\sum_{j}^{3} (CropAreain1961-65_{jvc} \times Releases_{jct})}{\sum_{j}^{3} CropArea_{jvc}}$$
(4)
$$Std.releases \times 2000area_{vct} = \frac{\sum_{j}^{11} (CropAreain2000_{jvc} \times Std.releases_{jct})}{\sum_{j}^{11} CropArea_{jvc}}$$
(5)

where, standardized releases are the number of releases normalized by the total number of releases in SSA

	(1)	(2)	(3)
Panel A: All			
Releases $ imes$ 2000 area	6.8×10^{-06}		
	(.00021)		
Releases \times 1961-65 area		00018	00024
		(.00016)	(.00017)
Ν	317,517	300,839	274,681
Panel B: Girls			
Releases $ imes$ 2000 area	0.00026		
	(.00034)		
Releases $ imes$ 1961-65 area		00025	00047
		(.00026)	(.00024)**
Ν	154,776	146,661	133,794
Panel C: Boys			
Releases $ imes$ 2000 area	00012		
	(.0004)		
Releases $ imes$ 1961-65 area		0.000049	0.00015
		(.00041)	(.00041)
N	162,189	153,636	140,441
Geog controls	No	No	Yes

Table 6: Reduced form impact on infant mortality in SSA (using MV releases), 1961-2000

Note: Geographic controls include distance to coast \times region \times year FE and distance to cities \times region \times year FE.

	(1)	(2)	(3)
Panel A: All			
Std. releases \times 2000 area	-0.0036		
	(0.0053)		
Std. releases \times 1961-65 area		-0.0039	-0.0050
		(0.0036)	(0.0037)
N	317,517	300,839	274,681
Panel B: Girls			
Std. releases \times 2000 area	-0.0047		
	(0.0056)		
Std. releases \times 1961-65 area		-0.0034	-0.0076
		(0.0060)	(0.0054)
Ν	154,776	146,661	133,794
Panel C: Boys			
Std. releases \times 2000 area	0.0003		
	(0.0094)		
Std. releases $ imes$ 1961-65 area		0.0003	0.0017
		(0.0083)	(0.0082)
N	162,189	153,636	140,441
Geog controls	No	No	Yes

Table 7: Reduced form impact on infant mortality in SSA (using normalized/ standardized MV releases), 1961-2000

Note: Geographic controls include distance to coast \times region \times year FE and distance to cities \times region \times year FE.

Association between MV areas and Releases

	(1)	(2)	(3)	(4)	(5)
	Cassava	Maize	Millet	Rice	Sorghum
Panel A:					
Releases	0.0039	0.0016	0.0003	0.0012	0.0026
	(0.0021)*	(0.0021)	(0.0019)	(0.0015)	(0.0026)
N	224	222	225	216	223
# Countries	25	25	25	25	25
Avg yr.	9	8.9	9	8.6	8.9
Panel B:					
Std. releases	0.0584	0.0662	0.0028	0.0252	0.0418
	(0.0314)*	(0.0846)	(0.0187)	(0.0321)	(0.0415)
N	224	222	225	216	223
# Countries	25	25	25	25	25
Avg yr.	9	8.9	9	8.6	8.9

Table 8: Relationship between MV areas and cumulative releases, 1961-2000

Figure 9: Comparison of MV cassava area and cumulative releases

Figure 10: Comparison of MV maize area and cumulative releases

Figure 11: Comparison of MV rice area and cumulative releases

Figure 12: Comparison of MV sorghum area and cumulative releases

	(1)	(2)	(3)	(4)	(5)
	Cassava	Maize	Millet	Rice	Sorghum
Panel A: MV areas					
Post	-9.5996	-10.8284	-3.9547	-15.5707	-8.6806
	(2.4448)***	(3.9891)**	(3.5047)	(2.8369)***	(4.6789)*
$Post\timesTrend$	0.0049	0.0055	0.0020	0.0079	0.0044
	(0.0012)***	(0.0020)**	(0.0018)	(0.0014)***	(0.0024)*
Ν	234	234	234	234	234
Panel B: Yields					
Post	-1.6598	-6.9708	-6.5605	-6.9430	2.4027
	(12.4172)	(13.6409)	(6.9956)	(10.6562)	(12.4827)
$Post\timesTrend$	0.0008	0.0036	0.0033	0.0035	-0.0012
	(0.0062)	(0.0069)	(0.0035)	(0.0054)	(0.0063)
Ν	1,000	1,040	982	992	982

Table 9: Impact on MV areas and ln(yields) when cumulative releases > 0, 1961-2000

Note: Regressions control for country specific linear trends. Standard errors clustered at country level.

Global Agro-Ecological Zones

- Food and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems Analysis (IIASA) have developed an Agro-Ecological Zones (AEZ) methodology to assess agricultural resources and potential
- GAEZ provides data on agricultural suitability and potential yields for:
 - four input levels (high, intermediate, low and mixed)
 - five water supply system types (rain-fed, rain-fed with water conservation, gravity irrigation, sprinkler irrigation and drip irrigation)
 - at crop level (49 crops)
 - for baseline climate (1961-1990) and future climate conditions

Treatment Variable based on Potential Yields (from GAEZ)

For village v in country c at time t, define a measure:

• analogous to our original treatment variable (Equation 4)

$$MV imes PY(high)_{vct} = [\sum_{j}^{11} (PotentialYields(high)_{jvc} imes MVArea_{jct}]/11$$
(6)

• of expected yields:

$$MV imes PY(expected)_{vct} = \sum_{j}^{11} [PY(high)_{jvc} imes MVArea_{jct} + PY(low)_{jvc} imes (1 - MVArea_{jct})]/11$$
 (7)

where, PY(high) and PY(low) refers to potential yields corresponding to high and low inputs respectively 40/43 Table 10: Reduced form impact of potential yields in $2000 \times MV$ on infant mortality

	(1)	(2)	(3)
	All	Girls	Boys
$MV \times PY$ (exp)	0.0050 (0.0134)	0.0230 (0.0157)	-0.0144 (0.0206)
Ν	636,542	309,685	325,365
$MV \times PY$ (high)	0.0042 (0.0107)	0.0184 (0.0127)	-0.0113 (0.0164)
Ν	636,542	309,685	325,365

- India: Data is available on district (admin level 2) level data on wide range of agricultural indicators from 1966 to 2009. DHS type data is not geo-referenced but potentially available at similar resolution.
- Ethiopia: compiled subnational data (admin level 1) on input use (MVs, irrigation, fertilizers and pesticides) from 1997 to 2010 (at 10 points of time) and plan to link it to LSMS-ISA and DHS
- Other suggestions?

References

- Evenson, R. E. and Gollin, D. (2003). Crop variety improvement and its effect on productivity: The impact of international agricultural research. CABI.
- Monfreda, C., Ramankutty, N., and Foley, J. A. (2008). Farming the planet: 2. geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. *Global biogeochemical cycles*, 22(1).
- Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., and Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. *Nature communications*, 3:1293.